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Background

+Graph neural networks + Self-supervision (SS) in images



Background:
SimpleContrastive Learning (simCLR)

• Pre-text is not the greatest idea due to ad-hoc….
• Simple idea: maximizing the agreement of representations 

under data  transformation, using a contrastive loss in the 
latent/feature space 

• Super effective: 10% relative improvement over previous 
SOTA (cpc v2), outperforms AlexNet with 100X fewer labels



Background

+Pre-training graph neural networks (GNNs) is under-explored with 
some exceptions, while its necessity emerges in recent years;

+Designing GNN pre-training schemes is challenging due to the 
dataset diversity;

+Recent surge of interest in contrastive learning in computer vision 
provides us with a potential GNN pre-training scheme.



Methods: Data Augmentation for Graphs

+Data augmentation: creating novel and realistically rational data 
via certain transformation without affecting the semantics label;

+Little exploration on data augmentations on graphs;

+We propose four general data augmentations for graph-structured 
data and discuss the intuitive priors that they introduce.



Graph Contrastive Learning (GraphCL)
+GraphCL: maximizing agreement between two augmented views of 

graph via a contrastive loss in the latent space.
+ “InfoMax”: essentially maximizing a lower bound of two views’ mutual information



The Role of Data Augmentation in GraphCL



The Role of Data Augmentation in GraphCL

+ Obs. 1. Data augmentations are crucial in graph contrastive learning;

+ Obs. 2. Composing different augmentations benefits more;

+ Obs. 3. Edge perturbation benefits social networks but hurts some biochemical molecules;

+ Obs. 4. Applying attribute masking achieves better performance in denser graphs;

+ Obs. 5. Node dropping and subgraph are generally beneficial across datasets;

+ Obs. 6. Overly Simple Contrastive Tasks Do Not Help.



Comparison with the State-of-the-arts

+Semi-supervised
learning:

+Unsupervised
representation
learning:



GraphCL: The Remaining Gap?

+Unlike images, graph datasets are abstractions of diverse nature (e.g,. 
pandemics, citation networks, biochemical molecules, or social networks).

+GraphCL constructs specific contrastive views of graph data via hand-picking
ad-hoc augmentations for every dataset

+The choice of augmentation follows empirical rules of thumb, typically
summarized from many trial-and-error experiments per dataset.

+Can we get more principled and automated?



GraphCL Automated: Bi-Level Optimization

+ Upper-level objective L: the same GraphCL objective
+ Lower-level objective D: optimizing the sampling distribution P(A1, A2) jointly for augmentation pairs
+ We exploit the signals from the self-supervised training itself, without accessing downstream labeled data



GraphCL Automated: Minimax Principle

+ Philosophy 1: to always exploit the most challenging augmentations!



GraphCL Automated: Diversity Principle

+ Philosophy 1: to always exploit the most challenging augmentations!

+ Philosophy 2: avoid selection ”collapse” and choose Pprior as the uniform distribution for diversity



GraphCL Automated: Conditional Projection Heads

+ Philosophy 1: to always exploit the most challenging augmentations!

+ Philosophy 2: avoid selection ”collapse” and choose Pprior as the uniform distribution for diversity

+ Architecture modification: more augmentations -> more “augmentation-specific” projection heads



Performance Overview: GraphCL Automated

+ Obs. 1. Across datasets originated from diverse sources, automated augmentation selection 
performs comparably to GraphCL with exhaustively hand-tuned augmentation rules

+ Obs. 2. Automatically discovered augmentations largely recover the ”best practice” discovered 
in previous GraphCL (by exhaustive hand tuning)

+ Obs. 3. On “unseen” datasets from specific bioinformatics domains, we achieve better 
performance than GraphCL whose empirical rules were not derived from such data, indicating 
better generalizability to unseen datasets

+ Obs. 4. Our method outperforms heuristic self-supervised methods, with few exceptions. It
also scales up well to larger graph datasets, e.g., OGB (ogbg-ppa, ogbg-code).



Uprising field, 
and still way to go!
+ Heterogeneous is the future key

+ Scaling up, and efficient training

+ More automated “priors”

+ Imbalanced graph and “cold-start”

+ Online and continual learning

+…..



Thank you!
Q&A Please
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