COMBINING REPRESENTATION LEARNING AND LOGICAL RULE REASONING FOR KNOWLEDGE GRAPH INFERENCE

Yizhou Sun

Department of Computer Science University of California, Los Angeles yzsun@cs.ucla.edu

August 15, 2021

Bringing First-Order Logic into Uncertain KG Embedding

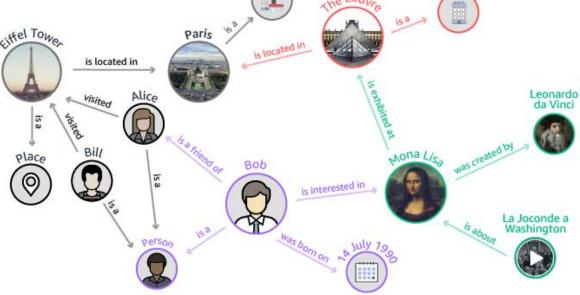
UniKER: Integrating Horn Rule Reasoning into KGE

Summary

Knowledge Graph

What are knowledge graphs?

- Multi-relational graph data
 - (heterogeneous information network)
- Provide structured representation for semantic relationships
 between real-world entities

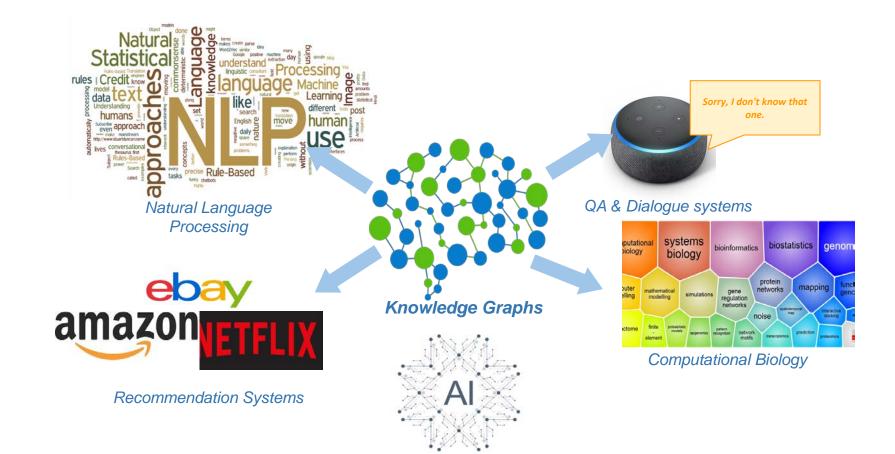


A triple (h, r, t) represents a fact, ex: (Eiffel Tower, is located in, Paris)

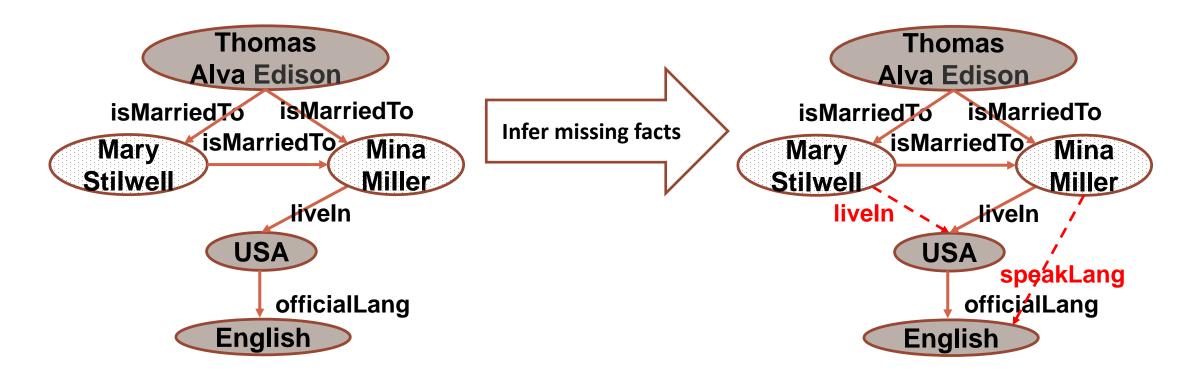
Examples of KG

Applications of KGs

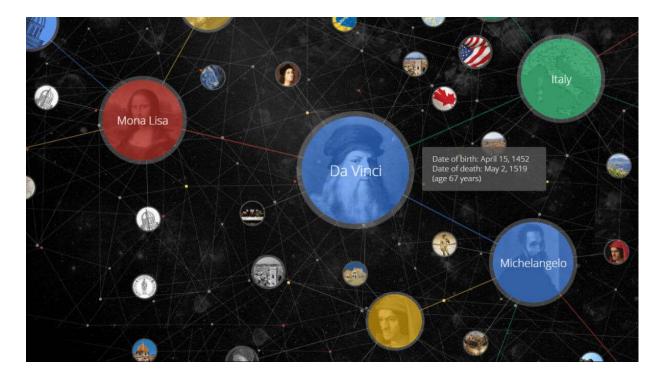
- Foundational to knowledge-driven AI systems
- Enable many downstream applications (NLP tasks, QA systems, etc)



 Knowledge graph reasoning aims at inferring missing knowledge through the existing facts.



- Entities: low dimensional vectors
- Relations: parametric algebraic operators
- Triples: representation-based score function



Summary of Existing Approaches

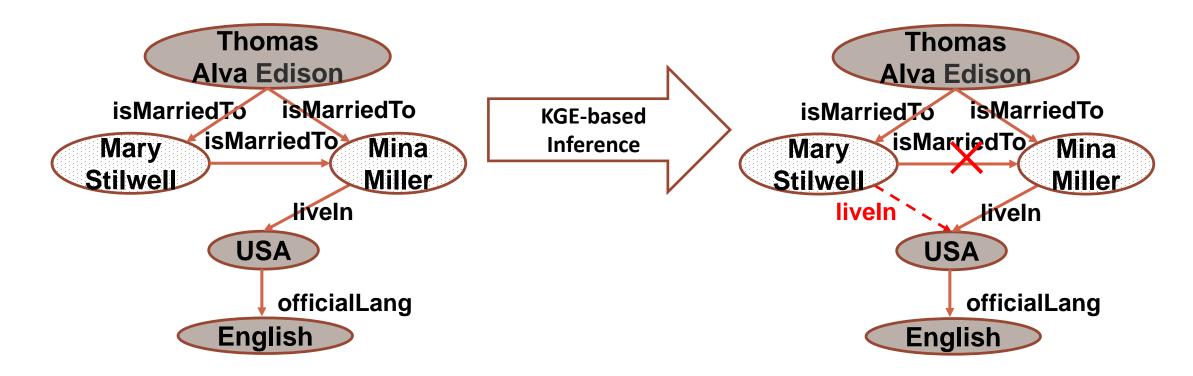
- Define a score function for a triple: $f_r(h, t)$
 - According to entity and relation representation
- Define a loss function to guide the training
 - E.g., an observed triple scores higher than a negative one

Model	Score Function		
SE (Bordes et al., 2011)	$-\left\ \boldsymbol{W}_{r,1}\mathbf{h}-\boldsymbol{W}_{r,2}\mathbf{t}\right\ $	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^k, oldsymbol{W}_{r,\cdot} \in \mathbb{R}^{k imes k}$	
TransE (Bordes et al., 2013)	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ $	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$	
TransX	$- \left\ g_{r,1}(\mathbf{h}) + \mathbf{r} - g_{r,2}(\mathbf{t}) ight\ $	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^{k}$	
DistMult (Yang et al., 2014)	$\langle {f r}, {f h}, {f t} angle$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$	
ComplEx (Trouillon et al., 2016)	$\operatorname{Re}(\langle \mathbf{r}, \mathbf{h}, \overline{\mathbf{t}} angle)$	$\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{C}^k$	
HolE (Nickel et al., 2016)	$\langle {f r}, {f h} \otimes {f t} angle$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^{k}$	
ConvE (Dettmers et al., 2017)	$\langle \sigma(\operatorname{vec}(\sigma([\overline{\mathbf{r}},\overline{\mathbf{h}}]*\mathbf{\Omega})) \boldsymbol{W}),\mathbf{t} angle$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$	
RotatE	$- \ \mathbf{h} \circ \mathbf{r} - \mathbf{t} \ ^2$	$\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{C}^k, r_i = 1$	

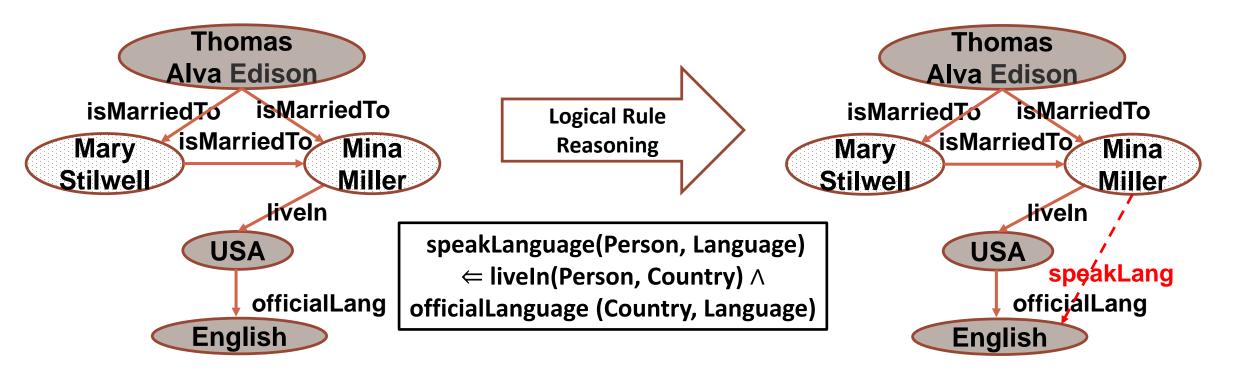
Source: Sun et al., RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space (ICLR'19)

Pros and Cons of KGE

- Knowledge Graph Embedding
 - Shows good scalability as well as robustness.
 - Fails to capture high-order dependency between entities and relations.
 - Can't handle cold-start entities



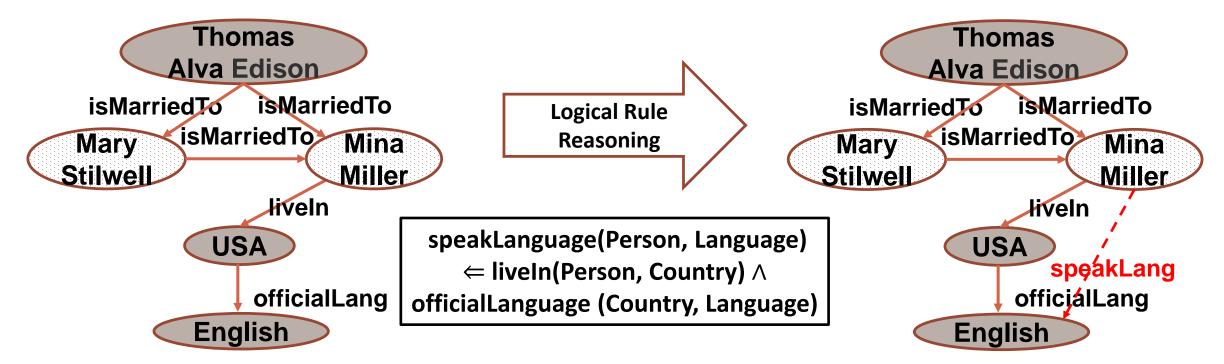
Find the truth value of each triple to maximize the satisfaction of rules



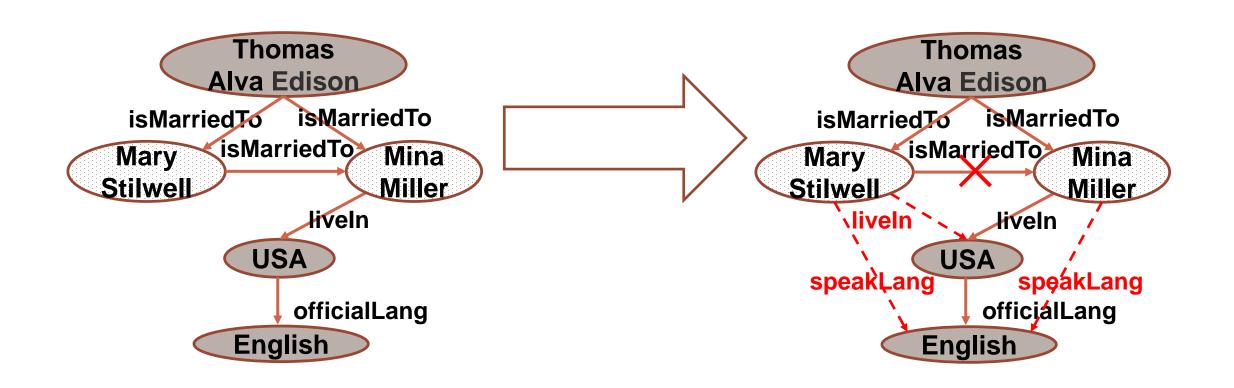
Pros and Cons of Logical Rule-based Reasoning

Logical Rule-based Reasoning

- Good at capturing high-order dependency and good interpretability.
- Unable to handle noisy data as well as suffer from high computation complexity.
- Coverage is low



Combine both Worlds:1+1>2!



Introduction

Bringing First-Order Logic into Uncertain KG Embedding

UniKER: Integrating Horn Rule Reasoning into KGE

Summary

The First Attempt

 Chen et al., "<u>Embedding Uncertain Knowledge Graphs</u>," AAAI'19

Two Types of Errors in KG

False positive

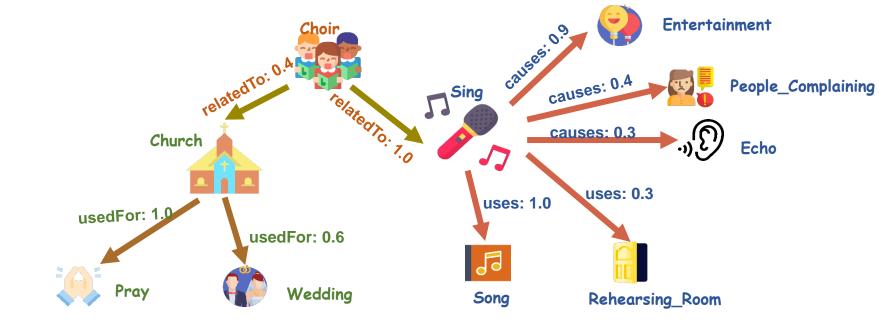
- An observed triple is wrong,
 - e.g., (Obama, is_born_in, Kenya)

False negative

- A true fact is missing
 - e.g., (Eiffel Tower, is located in, France)

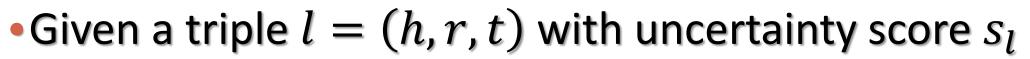
Handling Uncertainty in Triples

- False positive errors can be alleviated by introducing uncertainty
 - E.g., (Obama, is_born_in, Kenya): 0.01

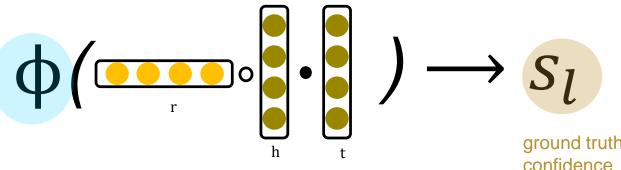


• Fit $f_r(h, t)$ to uncertainty scores

From score function to uncertainty score



- Transform $f_r(h, t)$ into a score in the range [0,1]
 - E.g., for DisMult score function



• Where $\phi(\cdot)$ can be defined as

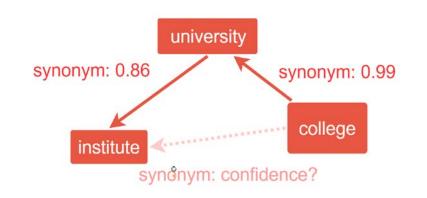
• Logistic function
$$\ \phi(x) = rac{1}{1+e^{-(\mathbf{w}x+\mathbf{b})}}$$
 UKGE(logi)

- Bounded Rectifier $\phi(x) = \min(\max(\mathbf{w} x + \mathbf{b}, 0), 1)$ UKGE(rect)

Handling Missing Facts

Are unseen triples still needed?

- Yes, negative triples are still data points!
- •Can we treat them as false, i.e., $s_l = 0$, if triple *l* is unseen?
 - No, we are going to make too many mistakes!
 - The potential probability of an unseen triple could be higher than an observed triple with low confidence



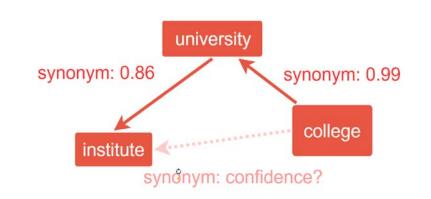
Bringing Logic Rules

•What are logic rules?

- Logic rule (Template)
 - (<u>A</u> , synonym, <u>B</u>) \land (<u>B</u> , synonym, <u>C</u>) \rightarrow (<u>A</u>, synonym, <u>C</u>)
- Ground rule (<mark>Instance</mark>)
 - (college, synonym, university) ∧ (university , synonym, institute) → (college, synonym, institute)

•Why are they helpful?

- Help us to infer the score
- for unseen triples



Probabilistic Soft Logic

Quantify a ground rule using PSL

• Lukasiewicz t-norm, from Boolean logic to soft logic

$$l_1 \wedge l_2 = \max\{0, I(l_1) + I(l_2) - 1\}$$

$$l_1 \vee l_2 = \min\{1, I(l_1) + I(l_2)\}$$

$$\neg l_1 = 1 - I(l_1)$$

Probability of a ground rule γ ≡ γ_{body} → γ_{head}
p_γ = I(¬γ_{body} ∨γ_{head}) = min{1,1 − I(γ_{body}) + I(γ_{head}))
Distance to satisfaction d_γ = 1 − p_γ = max{0, I(γ_{body}) − I(γ_{head})}

The Goal: Minimize Distance to Satisfaction

• Example: Consider the following ground rule

 l_1 confidence: 0.99 l_2 confidence: 0.86 • (college, synonym, university) \land (university, synonym, institute) \rightarrow (college, synonym, institute) l_3 confidence: ?

• Recall. l_3 confidence: ?

$$\begin{aligned} d_{\gamma} &= \max\{0, \frac{I(l_{1} \land l_{2})}{I(l_{1} \land l_{2})} - I(l_{3})\} \\ &= \max\{0, \frac{s_{l_{1}}}{s_{l_{1}}} + \frac{s_{l_{2}}}{s_{l_{2}}} - 1 - f(l_{3})\} \\ &= \max\{0, 0.85 - f(l_{3})\} \end{aligned}$$

ge, synonym, university) \wedge (university, synonym, institute) \rightarrow ge, synonym, institute)

Say, our embedding model predicts it as 0.65. How good is this prediction?

The New Embedding Model

- For observed triples, force its score close to ground truth score
- For unseen triples, minimize the distance to satisfaction in ground rules they are involved

$$\mathcal{J} = \sum_{l \in \mathcal{L}^+} \|f(l) - s_l\|^2 + \sum_{l \in \mathcal{L}^-} \sum_{\gamma \in \Gamma_l} |\psi_{\gamma}(f(l))|^2$$

Embedding-based confidence function

Distance to satisfaction for a ground rule γ , where *triple l* is involved in

Datasets

Dataset	#Ent.	#Rel.	#Rel. Facts	Avg(s)	$\operatorname{Std}(s)$
CN15k	15,000	36	241,158	0.629	0.232
NL27k	27,221	404	175,412	0.797	0.242
PPI5k	5,000	7	271,666	0.415	0.213

Logic Rules

(A, related to, B) \land (B, related to, C) \rightarrow (A, related to, C)

(A, causes, B) \land (B,causes,C) \rightarrow (A,causes,C)

(A, competeswith, B) \land (B, competeswith, C) \rightarrow (A, competeswith, C) (A, atheletePlaysForTeam, B) \land (B, teamPlaysSports, C) \rightarrow (A, atheletePlaysSports, C)

(A, binding, B) \land (B, binding, C) \rightarrow (A, binding, C)

- Deterministic KG embedding models, which does not model confidence scores explicitly
 - TransE [Bordes et al. 2013)]
 - DistMult [Yang et al. 2015]
 - ComplEx [Trouillon et al. 2016]
- Uncertain Graph Embedding, which only provides node embeddings
 - URGE [Hu et al. 2017]
- Two simplified version of our models
 - Without Negative Sampling (UKGE_n-)
 - Can we just ignore the negative links during training?
 - Without PSL (UKGE_p-)
 - Will simply treating unseen relations as 0 a good strategy?

Relation Fact Confidence Score Prediction

• Given an unseen triple (h,r,t), predict its confidence • Metrics: MSE and MAE ($\times 10^{-2}$)

Dataset	CN	15k	NL	27k	PP	I5k
				MAE		
URGE						
UKGE _{n-}	23.96	30.38	24.86	36.67	7.46	19.32
$UKGE_{p-}$	9.02	20.05	2.67	7.03	0.96	4.09
$UKGE_{rect}$						
UKGE _{logi}	9.86	20.74	3.43	7.93	0.96	4.07

- Given a query (h, r, <u>?t</u>), rank all entities in our vocabulary as tail candidates
- Metrics: normalized Discounted Cumulative Gain (nDCG) (linear gain and exp gain)

metrics	CN	15K	NL	27k	PP	[5k
Dataset		-		-		-
TransE	1					
DistMult			1			
ComplEx	0.723	0.712	0.921	0.913	0.896	0.881
URGE	1					
$UKGE_{n-}$						
$UKGE_{p-}$						
UKGE _{rect}						
UKGE _{logi}	0.789	0.788	0.955	0.956	0.970	0.969

Relation Fact Ranking – Case Study

			Ground Truth Entity Score	<mark>Entity</mark> P	Predictions Predicted Score True Score
CN15k	<mark>house</mark>	usedfor	sleeping 1.0		relaxing 0.86 N/A
			rest 0.98 bed away from hom	<mark>e</mark> 0.71	sleeping 0.85 1.0 rest 0.82 0.98
NII 27L	Toyota	competeswith	stay overnight 0.71		hotel room 0.80 N/A
NL27k	Toyota	competeswith	Honda 1.0 Ford 1.0		<mark>Honda</mark> 0.94 1.0 <mark>Hyundai</mark> 0.91 0.72
			BMW 0.96		Chrysler 0.90 N/A
			General Motors 0.9	0	<mark>Nissan</mark> 0.89 0.86

Introduction

Bringing First-Order Logic into Uncertain KG Embedding

UniKER: Integrating Horn Rule Reasoning into KGE

Summary

The Second Attempt

 Cheng et al., UniKER: A Unified Framework for Combining Embedding and Horn Rules for Knowledge Graph Inference, In Submission

Existing Literature on Combining Both Worlds

- Probabilistic logic is widely used to integrate both worlds
 - PSL-based Regularization in Embedding Loss
 - Leverage Probabilistic Soft Logic (PSL) [7] for satisfaction loss calculation
 - Treat logical rules as additional regularization to embedding models, where the satisfaction loss of ground rules is integrated into the original embedding loss.
 - Limitation: only utilize a sample set of rule instances
 - Embedding-based Variational Inference for MLN.
 - Extends Markov Logic Network (MLN) [8]
 - Leverage graph embedding to define variational distribution for all possible hidden triples to conduct variational inference of MLN.
 - Limitation: efficiency issue, sampling is required

Combining Both Worlds

Categories	Methods	Interactive	Exact Logical Inference
PSL-based Regularization	KALE [1]	×	×
	RUGE [2]	V	×
	Rocktaschel et al [3]	×	×
Embedding-based Variational Inference to MLN	pLogicNet [4]	V	×
	ExpressGNN [5]	V	×
	pGAT [6]	V	×

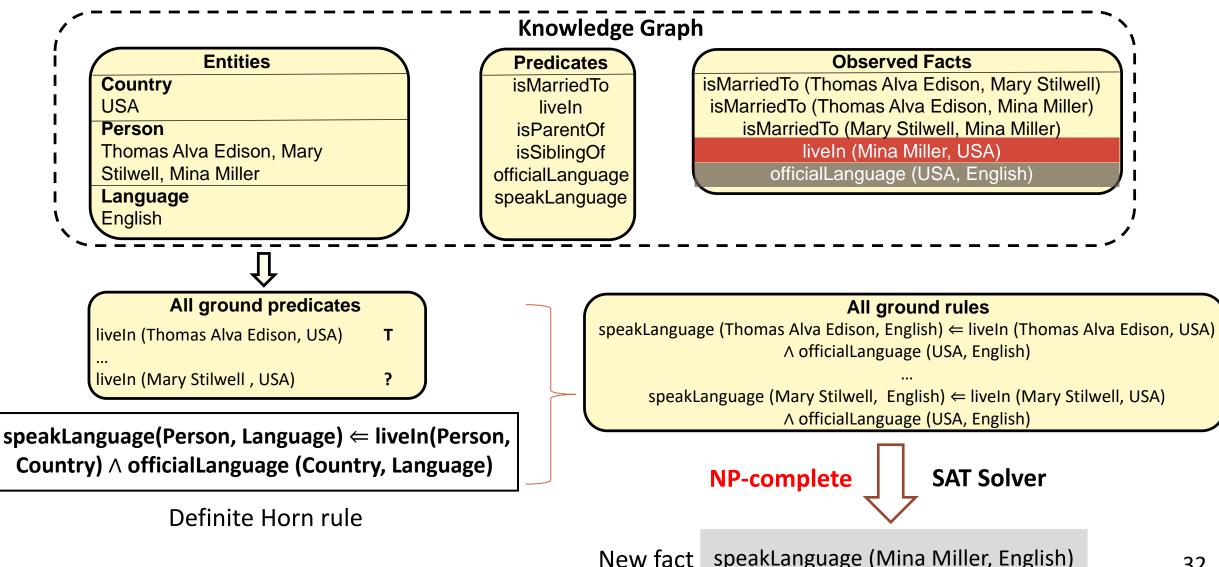
Our Proposed Work: UniKER for Horn Rules

Idea 1: use forward chaining to conduct exact inference

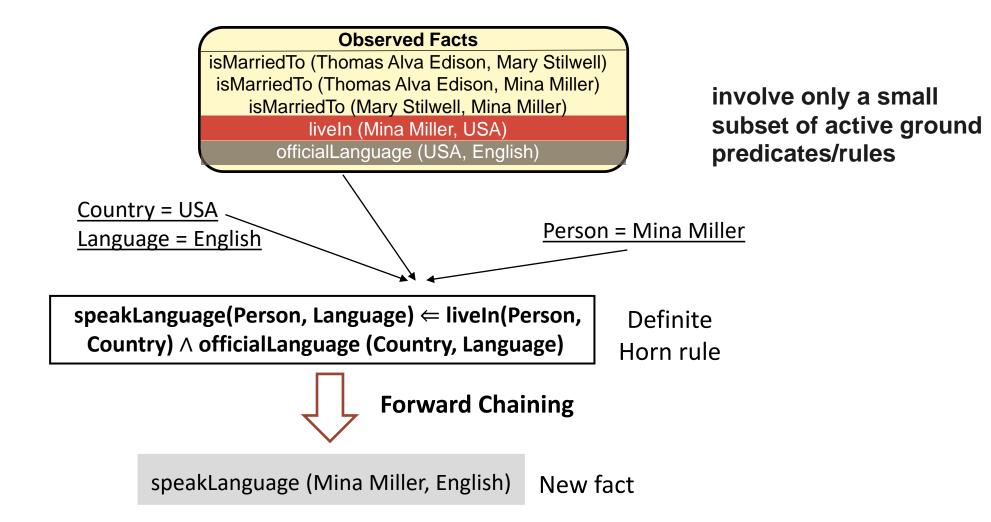
 Idea 2: combine embedding and logical rules in an iterative manner.

 Idea 3: remove potential incorrect triples during learning to ensure robustness

Traditional Logical Inference: MAX-SAT problem



Forward Chaining for Horn rules: Exact and Fast



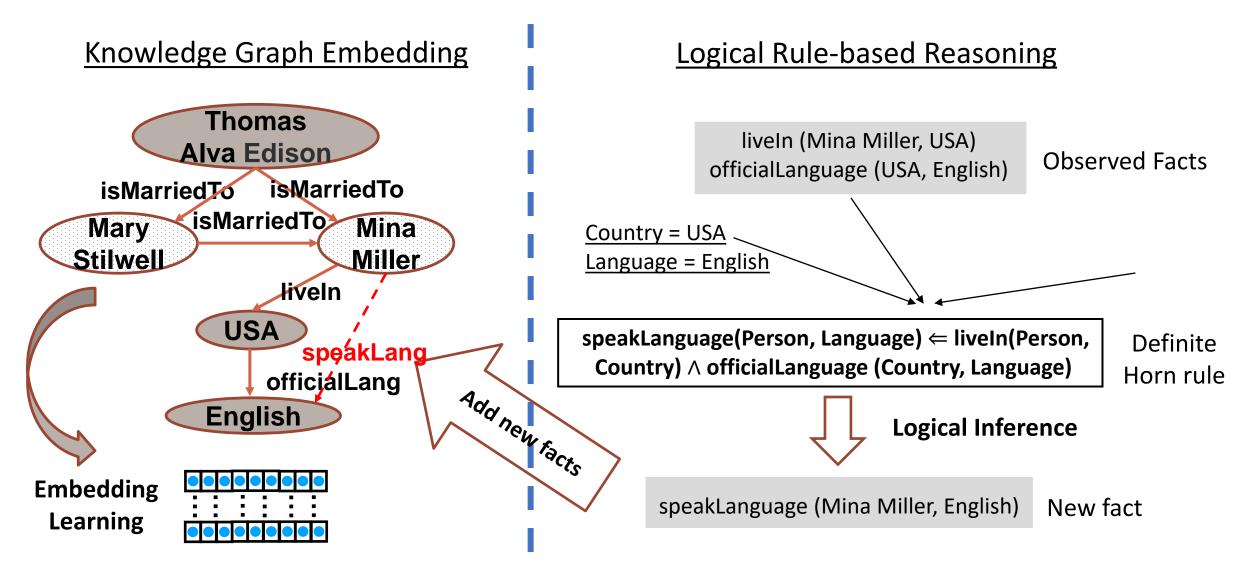
Iterative Mutual Enhancement

Enhance KGE via logical inference
 Update KG via forward chaining-based logical reasoning

Enhance logical inference via KGE

- Excluding potential incorrect triples
- Including potential useful hidden triples

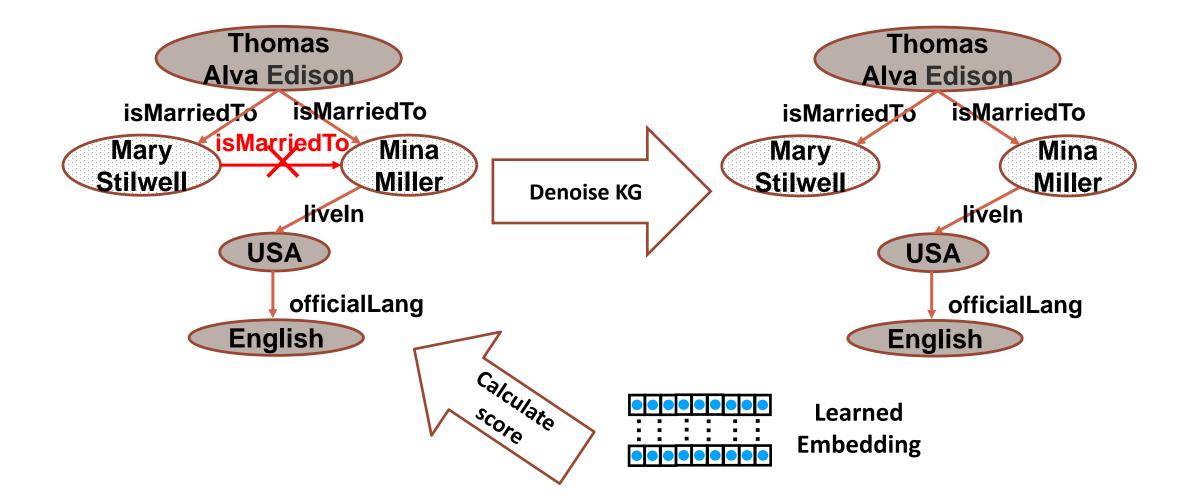
Update KG via Forward Chaining-based Logical Reasoning

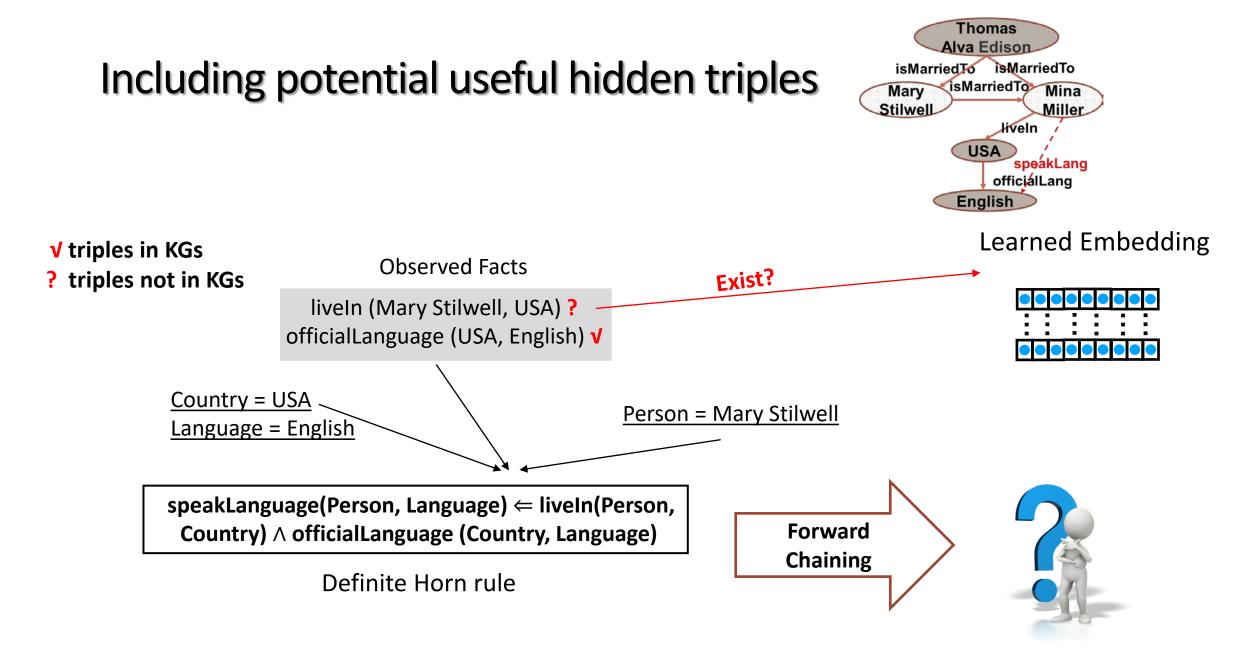


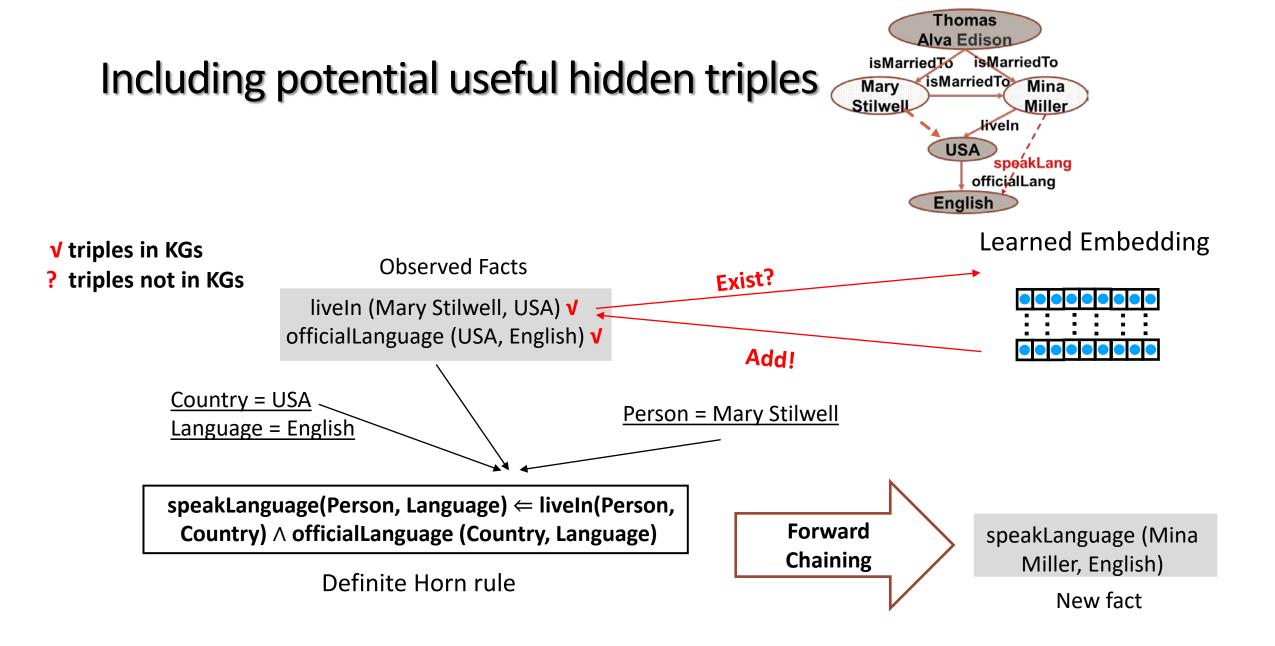
Iterative Mutual Enhancement

- Enhance KGE via logical inference
 Update KG via forward chaining-based logical reasoning
- •Enhance logical inference via KGE 🔎
 - Excluding potential incorrect triples
 - Including potential useful hidden triples

Excluding potential incorrect triples







Experimental Results

KG completion task

Madal	Kinship		FB15k-237			WN18RR			
Model	Hit@1	Hit@10	MRR	Hit@1	Hit@10	MRR	Hit@1	Hit@10	MRR
RESCAL	0.489	0.894	0.639	0.108	0.322	0.179	0.123	0.239	0.162
SimplE	0.335	0.888	0.528	0.150	0.443	0.249	0.290	0.351	0.311
HypER [†]	0.364	0.903	0.551	0.252	0.520	0.341	0.436	0.522	0.465
TuckER [†]	0.373	0.898	0.567	0.266	0.544	0.358	0.443	0.526	0.470
BLP^{\dagger}	-	-	-	0.062	0.150	0.092	0.187	0.358	0.254
MLN	0.655	0.732	0.694	0.067	0.160	0.098	0.191	0.361	0.259
KALE	0.433	0.869	0.598	0.131	0.424	0.230	0.032	0.353	0.172
RUGE	0.495	0.962	0.677	0.098	0.376	0.191	0.251	0.327	0.280
ExpressGNN	0.105	0.282	0.164	0.150	0.317	0.207	0.036	0.093	0.054
pLogicNet	0.683	0.874	0.768	0.261	0.567	0.364	0.301	0.410	0.340
pGAT [†]	-	-	-	0.377	0.609	0.457	0.395	0.578	0.459
$BoxE^{\dagger}$	-	-	-	-	0.538	0.337	-	0.541	0.451
TransE	0.221	0.874	0.453	0.231	0.527	0.330	0.007	0.406	0.165
UniKER-TransE	0.873	0.971	0.916	0.463	0.630	0.522	0.040	0.561	0.307
DistMult	0.360	0.885	0.543	0.220	0.486	0.308	0.304	0.409	0.338
UniKER-DistMult	0.770	0.945	0.823	0.507	0.587	0.533	0.432	0.538	0.485
RotatE	0.787	0.933	0.862	0.237	0.526	0.334	0.421	0.563	0.469
UniKER-RotatE	0.886	0.971	0.924	0.495	0.612	0.539	0.437	0.580	0.492

Experimental Results

A few iterations is good enough

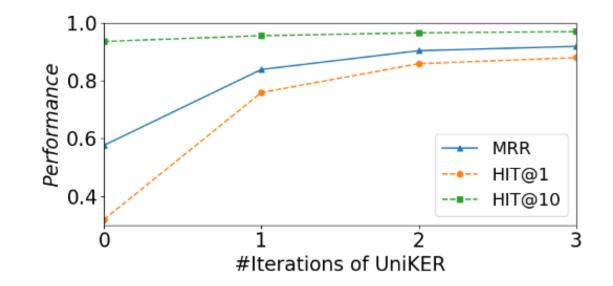


Figure 3: Impact of #iterations on UniKER (KG completion task on Kinship dataset).

Robust to Noise

• construct a noisy dataset with noisy triples to be 40% of original data.

Model	θ	Hit@1	Hit@10	MRR
TransE	-	0.026	0.800	0.319
UniKER-TransE	10 20 30 40 50	0.286 0.311 0.322 0.352 0.292	0.776 0.816 0.833 0.812 0.791	0.466 0.503 0.520 0.523 0.486

Table 3: Ablation study on noise threshold θ % on Kinship dataset (whose train set is injected with noise)

• Evaluate the scalability of forward chaining against a number of SOTA inference algorithms for MLN

Model	sub-YAGO3-10	sub-Kinship	RC1000	Kinship	FB15k-237	WN18RR
MCMC	76433s	-	-	-	-	-
MCSAT BP	1292s 10s	25912s 16343s	-	-	-	-
liftedBP	10s 15s	16075s	-	-	-	-
Tuffy	0.849s	1.398s	4.899s	-	-	-
Forward Chaining	0.003s	0.034s	0.007s	0.593s	186s	30s

Table 7: Comparison of Inference Time for Forward Chaining vs. MLN.

Introduction

Bringing First-Order Logic into Uncertain KG Embedding

UniKER: Integrating Horn Rule Reasoning into KGE

Take Away

Two methodologies in KG inference

- Embedding-based approach
- Logical rule-based reasoning
- Combination of the two worlds is the promising direction
 - Embedding can handle noise and uncertainty of KG
 - Logical rules provide higher-order dependency **constraints** among entities and relations
- Different ways of combination
 - UniKER is the best solution if the logical rules are confined to Horn rules

- [1] Guo S, Wang Q, Wang L, et al. Jointly embedding knowledge graphs and logical rules[C]//Proceedings of the 2016 conference on empirical methods in natural language processing. 2016: 192-202.
- [2] Guo S, Wang Q, Wang L, et al. Knowledge graph embedding with iterative guidance from soft rules[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2018, 32(1).
- [3] Rocktäschel T, Singh S, Riedel S. Injecting logical background knowledge into embeddings for relation extraction[C]//Proceedings of the 2015 conference of the north American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2015: 1119-1129.
- [4] Qu M, Tang J. Probabilistic logic neural networks for reasoning[J]. arXiv preprint arXiv:1906.08495, 2019.
- [5] Zhang Y, Chen X, Yang Y, et al. Can Graph Neural Networks Help Logic Reasoning?[J]. arXiv preprint arXiv:1906.02111, 2019.
- [6] Harsha Vardhan L V, Jia G, Kok S. Probabilistic logic graph attention networks for reasoning[C]//Companion Proceedings of the Web Conference 2020. 2020: 669-673.
- [7] Kimmig A, Bach S, Broecheler M, et al. A short introduction to probabilistic soft logic[C]//Proceedings of the NIPS Workshop on Probabilistic Programming: Foundations and Applications. 2012: 1-4.
- [8] Richardson M, Domingos P. Markov logic networks[J]. Machine learning, 2006, 62(1-2): 107-136.
- [9] Ren, H., Hu, W., and Leskovec, J. Query2box: Reasoning over knowledge graphs in vector space using box embeddings. ICLR'2020.
- [10] Ren, H. and Leskovec, J. Beta embeddings for multi-hop logical reasoning in knowledge graphs. NeurIPS'2020.
- [11] Hamilton, W. L., Bajaj, P., Zitnik, M., Jurafsky, D., and Leskovec, J. Embedding logical queries on knowledge graphs. NeurIPS'2018.

Q & A

• Thanks to my collaborators:

• Shirley Chen, Vivian Cheng, Junheng Hao, Muhao Chen, Wei Wang, Carlo Zaniolo

