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Knowledge Graph

•What are knowledge graphs?
• Multi-relational graph data 

• (heterogeneous information network)

• Provide structured representation for semantic relationships 
between real-world entities
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A triple (h, r, t) represents a fact, ex: 
(Eiffel Tower, is located in, Paris)



Examples of KG
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General-purpose KGs

Common-sense KGs & NLP

Bio & Medical KGs

Product Graphs & E-commerce



Applications of KGs
● Foundational to knowledge-driven AI systems
● Enable many downstream applications (NLP tasks, QA systems, etc)
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QA & Dialogue systems

Sorry, I don't know that 
one.

Computational Biology

Natural Language 
Processing

Recommendation Systems

Knowledge Graphs



Reasoning over Knowledge Graph

•Knowledge graph reasoning aims at inferring missing 
knowledge through the existing facts.
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Knowledge Graph Embedding

•Entities: low dimensional vectors
•Relations: parametric algebraic operators
•Triples: representation-based score function
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Summary of Existing Approaches

• Define a score function for a triple: 𝑓𝑓𝑟𝑟(𝒉𝒉, 𝒕𝒕)
• According to entity and relation representation

• Define a loss function to guide the training
• E.g., an observed triple scores higher than a negative one
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Source: Sun et al., RotatE: Knowledge Graph Embedding by Relational Rotation in 
Complex Space (ICLR’19)



Pros and Cons of KGE
• Knowledge Graph Embedding

• Shows good scalability as well as robustness.

• Fails to capture high-order dependency between entities and relations.

• Can’t handle cold-start entities
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KGE-based 
Inference
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Logical Rule-based KG reasoning

•Find the truth value of each triple to maximize the 
satisfaction of rules 
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Logical Rule 
Reasoning
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Pros and Cons of Logical Rule-based Reasoning
• Logical Rule-based Reasoning

• Good at capturing high-order dependency and good interpretability.
• Unable to handle noisy data as well as suffer from high computation complexity.
• Coverage is low
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Logical Rule 
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Combine both Worlds:1+1>2!
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The First Attempt

•Chen et al., "Embedding Uncertain Knowledge Graphs," 
AAAI’19
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http://web.cs.ucla.edu/%7Eyzsun/papers/2019_AAAI_UKG.pdf


Two Types of Errors in KG

•False positive
• An observed triple is wrong, 

• e.g., (Obama, is_born_in, Kenya)

•False negative
• A true fact is missing

• e.g., (Eiffel Tower, is located in, France)
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Handling Uncertainty in Triples

•False positive errors can be alleviated by introducing 
uncertainty
• E.g., (Obama, is_born_in, Kenya): 0.01

• Fit 𝑓𝑓𝑟𝑟(𝒉𝒉, 𝒕𝒕) to uncertainty scores
15
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From score function to uncertainty score 

•Given a triple 𝑙𝑙 = ℎ, 𝑟𝑟, 𝑡𝑡 with uncertainty score 𝑠𝑠𝑙𝑙
• Transform 𝑓𝑓𝑟𝑟(𝒉𝒉, 𝒕𝒕) into a score in the range [0,1]

• E.g., for DisMult score function

• Where 𝜙𝜙(⋅) can be defined as
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ϕ( ) ⟶ 𝑠𝑠𝑙𝑙
ground truth 
confidence

h t

r

• Logistic function

• Bounded Rectifier

UKGE(logi)

UKGE(rect)



Handling Missing Facts

•Are unseen triples still needed?
• Yes, negative triples are still data points!

•Can we treat them as false, i.e., 𝑠𝑠𝑙𝑙 = 0, if triple 𝑙𝑙 is unseen?
• No, we are going to make too many mistakes!

• The potential probability of an unseen triple could be higher than an 
observed triple with low confidence 
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Bringing Logic Rules

•What are logic rules?
• Logic rule (Template)

• (A , synonym, B) ∧ (B , synonym, C) → (A, synonym, C)

• Ground rule (Instance)
• (college, synonym, university) ∧ (university , synonym, institute) →

(college, synonym, institute)

•Why are they helpful?
• Help us to infer the score 

for unseen triples
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Probabilistic Soft Logic
• Quantify a ground rule using PSL

• Lukasiewicz t-norm, from Boolean logic to soft logic

• Probability of a ground rule 𝛾𝛾 ≡ 𝛾𝛾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 → 𝛾𝛾ℎ𝑒𝑒𝑒𝑒𝑒𝑒
• 𝑝𝑝𝛾𝛾 = 𝐼𝐼 ¬𝛾𝛾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏⋁𝛾𝛾ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = min{1,1 − 𝐼𝐼 𝛾𝛾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐼𝐼(𝛾𝛾ℎ𝑒𝑒𝑒𝑒𝑒𝑒))

• Distance to satisfaction
•
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More publications on PSL: https://psl.linqs.org/



The Goal: Minimize Distance to Satisfaction

•Example: Consider the following ground rule
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• (college, synonym, university) ∧ (university , synonym, institute) →
(college, synonym, institute)

• Recall, 

𝑙𝑙1 confidence: 0.99 𝑙𝑙2 confidence: 0.86

𝑙𝑙3 confidence: ?

0.99 0.86

Say, our embedding model predicts it as 0.65. 
How good is this prediction?



The New Embedding Model

•For observed triples, force its score close to ground truth 
score

•For unseen triples, minimize the distance to satisfaction in 
ground rules they are involved 
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Embedding-based 
confidence function

Distance to satisfaction 
for a ground rule 𝜸𝜸, 
where 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒍𝒍 is 
involved in



Experiments

•Datasets

•Logic Rules
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(A, relatedto, B)∧(B,relatedto,C)➝(A,relatedto,C)
(A, causes, B)∧(B,causes,C)➝(A,causes,C)

(A, competeswith, B)∧(B,competeswith,C)➝(A,competeswith,C)
(A, atheletePlaysForTeam, B)∧(B, teamPlaysSports, C)➝(A, atheletePlaysSports, C)

(A, binding, B)∧(B,binding,C)➝(A,binding,C)



Baselines
• Deterministic KG embedding models, which does not model 

confidence scores explicitly
• TransE [Bordes et al. 2013)]
• DistMult [Yang et al. 2015]
• ComplEx [Trouillon et al. 2016]

• Uncertain Graph Embedding, which only provides node embeddings
• URGE [Hu et al. 2017]

• Two simplified version of our models
• Without Negative Sampling  (UKGE_n-)

• Can we just ignore the negative links during training?
• Without PSL  (UKGE_p-)

• Will simply treating unseen relations as 0 a good strategy?
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Relation Fact Confidence Score Prediction

•Given an unseen triple (h,r,t),  predict its confidence
•Metrics: MSE and MAE (× 10−2)
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Relation Fact Ranking

•Given a query (h, r, ?t), rank all entities in our vocabulary as 
tail candidates

•Metrics: normalized Discounted Cumulative Gain (nDCG) 
(linear gain and exp gain)
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Relation Fact Ranking – Case Study
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Ground Truth Predictions
Entity Score Entity Predicted Score True Score
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The Second Attempt

•Cheng et al., UniKER: A Unified Framework for Combining 
Embedding and Horn Rules for Knowledge Graph Inference, 
In Submission
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Existing Literature on Combining Both Worlds
•Probabilistic logic is widely used to integrate both worlds

• PSL-based Regularization in Embedding Loss
• Leverage Probabilistic Soft Logic (PSL) [7] for satisfaction loss calculation
• Treat logical rules as additional regularization to embedding models, 

where the satisfaction loss of ground rules is integrated into the original 
embedding loss. 

• Limitation: only utilize a sample set of rule instances

• Embedding-based Variational Inference for MLN.
• Extends Markov Logic Network (MLN) [8]
• Leverage graph embedding to define variational distribution for all 

possible hidden triples to conduct variational inference of MLN.
• Limitation: efficiency issue, sampling is required
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Combining Both Worlds
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Categories Methods Interactive Exact Logical 
Inference

PSL-based 
Regularization

KALE [1] × ×

RUGE [2] √ ×

Rocktaschel et al [3] × ×

Embedding-based 
Variational 
Inference to MLN

pLogicNet [4] √ ×

ExpressGNN [5] √ ×

pGAT [6] √ ×



Our Proposed Work: UniKER for Horn Rules

• Idea 1: use forward chaining to conduct exact inference

• Idea 2: combine embedding and logical rules in an iterative 
manner. 

• Idea 3: remove potential incorrect triples during learning to 
ensure robustness
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Traditional Logical Inference: MAX-SAT problem
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Entities
Country 
USA
Person
Thomas Alva Edison, Mary 
Stilwell, Mina Miller
Language
English

Knowledge Graph
Predicates
isMarriedTo

liveIn
isParentOf
isSiblingOf

officialLanguage
speakLanguage

All ground predicates
speakLanguage (Thomas Alva Edison, English) ⇐ liveIn (Thomas Alva Edison, USA)

∧ officialLanguage (USA, English)
…

speakLanguage (Mary Stilwell,  English) ⇐ liveIn (Mary Stilwell, USA)
∧ officialLanguage (USA, English)

liveIn (Thomas Alva Edison, USA) T
…
liveIn (Mary Stilwell , USA) ?

All ground rules

SAT Solver

speakLanguage(Person, Language) ⇐ liveIn(Person, 
Country) ∧ officialLanguage (Country, Language)

Definite Horn rule
speakLanguage (Mina Miller, English)New fact

NP-complete

Observed Facts
isMarriedTo (Thomas Alva Edison, Mary Stilwell)
isMarriedTo (Thomas Alva Edison, Mina Miller)

isMarriedTo (Mary Stilwell, Mina Miller)
liveIn (Mina Miller, USA)

officialLanguage (USA, English)



Forward Chaining for Horn rules: Exact and Fast
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Definite 
Horn rule

Country = USA
Language = English

speakLanguage (Mina Miller, English) New fact

Forward Chaining

speakLanguage(Person, Language) ⇐ liveIn(Person, 
Country) ∧ officialLanguage (Country, Language)

Person = Mina Miller 

Observed Facts
isMarriedTo (Thomas Alva Edison, Mary Stilwell)
isMarriedTo (Thomas Alva Edison, Mina Miller)

isMarriedTo (Mary Stilwell, Mina Miller)
liveIn (Mina Miller, USA)

officialLanguage (USA, English)

involve only a small 
subset of active ground 
predicates/rules



Iterative Mutual Enhancement
•Enhance KGE via logical inference

•Update KG via forward chaining-based logical reasoning

•Enhance logical inference via KGE
•Excluding potential incorrect triples
•Including potential useful hidden triples
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Update KG via Forward Chaining-based Logical Reasoning
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Logical Rule-based ReasoningKnowledge Graph Embedding

Definite 
Horn rule

liveIn (Mina Miller, USA)
officialLanguage (USA, English)

Country = USA
Language = English

speakLanguage (Mina Miller, English) New fact

Logical Inference

speakLanguage(Person, Language) ⇐ liveIn(Person, 
Country) ∧ officialLanguage (Country, Language)

Observed Facts

Embedding 
Learning … … … ………
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Iterative Mutual Enhancement
•Enhance KGE via logical inference

•Update KG via forward chaining-based logical reasoning

•Enhance logical inference via KGE
•Excluding potential incorrect triples
•Including potential useful hidden triples
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Excluding potential incorrect triples

Infer missing facts

… … … ………

Denoise KG

Thomas 
Alva Edison

Mary 
Stilwell

isMarriedTo

USA
liveIn

officialLang
English

Mina 
Miller

isMarriedTo
isMarriedTo
×

Learned
Embedding 

Thomas 
Alva Edison

Mary 
Stilwell

isMarriedTo

USA
liveIn

officialLang
English

Mina 
Miller

isMarriedTo

37



Including potential useful hidden triples

√ triples in KGs
? triples not in KGs

… … … ………

Forward 
Chaining

Definite Horn rule

liveIn (Mary Stilwell, USA) ?
officialLanguage (USA, English) √

Country = USA
Language = English Person = Mary Stilwell 

speakLanguage(Person, Language) ⇐ liveIn(Person, 
Country) ∧ officialLanguage (Country, Language)

Observed Facts
Learned Embedding 
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√ triples in KGs
? triples not in KGs

Learned Embedding 

… … … ………

Forward 
Chaining

Definite Horn rule

liveIn (Mary Stilwell, USA) √
officialLanguage (USA, English) √

Country = USA
Language = English Person = Mary Stilwell 

speakLanguage(Person, Language) ⇐ liveIn(Person, 
Country) ∧ officialLanguage (Country, Language)

Observed Facts

speakLanguage (Mina 
Miller, English)

New fact
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Including potential useful hidden triples



Experimental Results
•KG completion task
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Experimental Results

•A few iterations is good enough
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Robust to Noise
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• construct a noisy dataset with noisy triples to be 40% of original data.



Effcient
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• Evaluate the scalability of forward chaining against a number of SOTA 
inference algorithms for MLN 
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Take Away
• Two methodologies in KG inference

• Embedding-based approach
• Logical rule-based reasoning

• Combination of the two worlds is the promising direction
• Embedding can handle noise and uncertainty of KG
• Logical rules provide higher-order dependency constraints among 
entities and relations

• Different ways of combination
• UniKER is the best solution if the logical rules are confined to Horn 
rules
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Q & A
• Thanks to my collaborators:

• Shirley Chen, Vivian Cheng, Junheng Hao, Muhao Chen, Wei Wang, Carlo Zaniolo
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