

Construction of Multi-Dimensional Knowledge Graphs

JIAWEI HAN, MICHAEL-AIKEN CHAIR PROFESSOR DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN AUGUST 25, 2020

Outline

A Knowledge Graph in Need is a Good Knowledge Graph Indeed

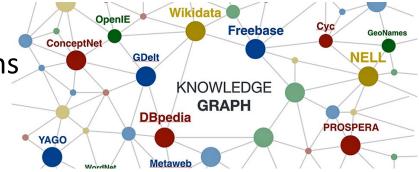
- Mining Unstructured Text for Multi-Dimensional Structured Information
 - Understanding Semantics: Text Embedding and Discriminative Topic Analysis
 - Organizing Data in Hierarchical Conceptual Space: Hierarchical Topic Mining
 - Organizing Documents in Multi-Dimensional Space: Text-Cubes
- Construction of Multi-Dimensional Knowledge Graphs
- Looking Forward

Why Multi-Dimensional Knowledge Graphs?

- General knowledge graphs
 - Many existing human-constructed knowledge graphs
 - Active research

3

- Automated and incremental construction of KGs
- □ Why Multi-Dimensional Knowledge Graphs?
 - General KG could be too general to fit concrete problems
 - Properties/links could be conditional on time, location, situation, ...
- □ Major challenges on construction/mining Multi-Dimensional KG
 - Data: 80%+ of big data is in the form of text/natural language/social media:
 - Unstructured, noisy, dynamic, ..., but inter-related
 - Automatic construction of MD KG from text



Outline

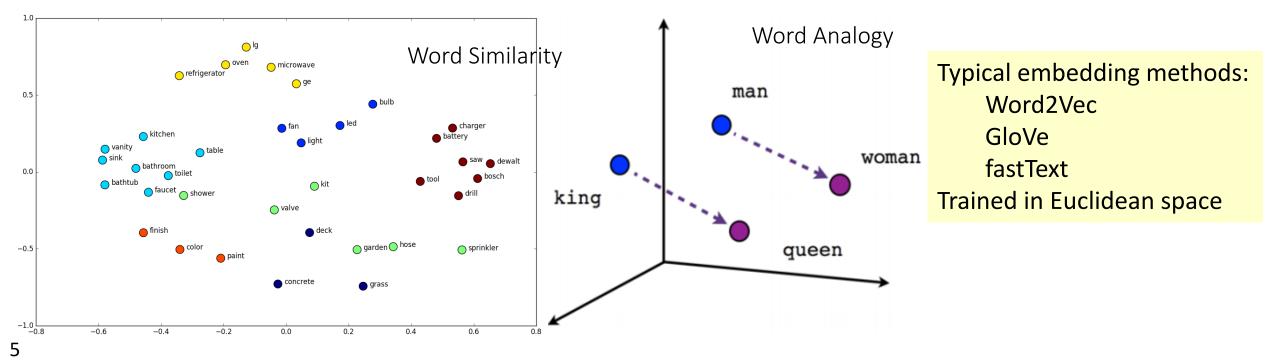
A Knowledge Graph in Need is a Good Knowledge Graph Indeed

Mining Unstructured Text for Multi-Dimensional Structured Information

- Understanding Semantics: Text Embedding and Discriminative Topic Analysis
- Organizing Data in Hierarchical Conceptual Space: Hierarchical Topic Mining
- Organizing Documents in Multi-Dimensional Space: Text-Cubes
- Construction of Multi-Dimensional Knowledge Graphs
- Looking Forward

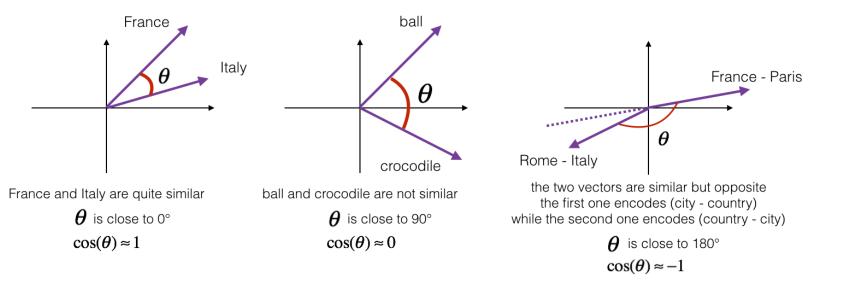
Text Embedding: Dimensionality Reduction in Text

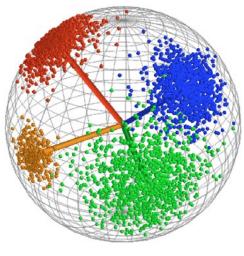
- Embed one-hot vectors into lower-dimension space: Address "curse of dimensionality"
- Unsupervised learning of text representations: A milestone in NLP and ML
- Word embedding captures useful properties of word semantics
 - Word similarity: Words with similar meanings are embedded closer
 - Word analogy: Linear relationships between words (e.g., king queen = man–woman)



Spherical Text Embedding [NeurlPS'19]

- Previous text embeddings (e.g., Word2Vec) are trained in the Euclidean space
 - But used on spherical space—Mostly directional similarity (i.e., cosine similarity)
 - Word similarity is derived using cosine similarity





- Word clustering (e.g., TaxoGen) is performed on a sphere
- Better document clustering performances when embeddings are normalized and spherical clustering algorithms are used

Joint Embedding: Integrating Local and Global Contexts

Local contexts can only partly define word semantics in unsupervised word embedding learning

Local contexts of "harmful" If I hear someone screwing with my car (ie, setting off the **alarm**) and **taunting** me to come out, you can be very sure that my Colt Delta Elite will also be coming with me. It is not the screwing with the car that would get them **shot**, it is the potential physical **danger**. If they are **taunting** like that, it's very possible that they also intend to **rob** me and or do other physically *harmful* things. Here in Houston last year a woman heard the sound of someone ...

- Design a generative model on the sphere that follows how humans write articles:
 - First a general idea of the paragraph/doc, then start to write down each word in consistent with not only the paragraph/doc, but also the surrounding words

 $\begin{array}{c|c} p(u \mid d) \propto \exp(\cos(u, d)) & p(v \mid u) \propto \exp(\cos(v, u)) \\ \hline \text{Document/} \\ \text{Paragraph (d)} & \hline & (u) & \hline & (v) \\ \end{array}$

JoSE: Performance & Case Studies

Document classification	Table 3: Document classification evaluation using k -NN ($k = 3$).						
	Embedding		sgroup	Movie	Review		
🗅 Training efficiency 💊		Macro-F1	Micro-F1	Macro-F1	Micro-F1		
	Avg. W2V	0.630	0.631	0.712	0.713		
Table 4: Training time (per iteration) on the latest Wikipedia dump.	SIF	0.552	0.549	0.650	0.656		
Word2Vec GloVe fastText BERT Poincaré GloVe JoSE	BERT	0.380	0.371	0.664	0.665		
Word2 vee Giove fustrext BERT Followe Giove 305E	_ Doc2Vec	0.648	0.645	0.674	0.678		
0.81 hrs 0.85 hrs 2.11 hrs > 5 days 1.25 hrs 0.73 hrs	JoSE	0.703	0.707	0.764	0.765		

Decoding acronyms

Distinguishing antonyms with embedding

Table 5: Effect of Global Context on Interpreting Acronyms.

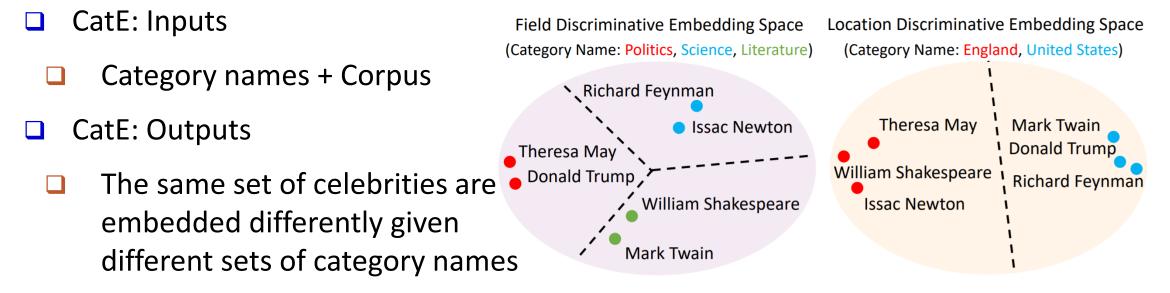
Acronyms	Global ($\lambda = \infty$)	Local ($\lambda = 0$)
CMU	mellon, carnegie,	andrew, kfnjyea00uh,
CMU	andrew, pa, pittsburgh	am2x, mr47, devineni
UIUC	urbana , illinois , uxa,	uxa, ux4, ux1,
0100	univ , uchicago	mrcnext, cka52397
UNC	chapel, carolina, astro,	launchpad, gibbs,
UNC	images, usc	umr, lambada, jge
Caltech	california, gap, institute,	juliet, jafoust, lmh,
Callecti	keith, technology	henling, bdunn
ппп	johns, camp, hopkins,	pablo, hasch, iglesias,
JHU	nation, grand	davidk, atlantis

Table 6: Cosine Similarity of Antony Embeddings Trained with Different Contexts.

Antonyms	Global ($\lambda = \infty$)	Local ($\lambda = 0$)
good - bad	0.3150	0.7127
happy - unhappy	0.3911	0.6178
large - small	0.4871	0.7265
increase - decrease	0.2663	0.7308
enter - exit	0.2756	0.5553
save - spend	-0.0388	0.4792

Discriminative Topic Mining via Category Name-Guided Embedding

- □ Traditional text embedding (e.g., Word2Vec, GloVe, fastText, JoSE)
 - Mapping words with similar local contexts closer in the embedding space
 - Not imposing particular assumptions on the type of data distributions
- CatE: Category Name-guided Embedding [WWW'20]
 - Weak guidance: leverages category names to learn word embeddings with discriminative power over the specific set of categories



Comparative Evaluation of Discriminative Topic Mining

Methods	NYT-L	ocation	NYT	-Topic	Ye	lp-Food	Yelp-Se	ntiment
Methous	britain	canada	education	politics	burger	desserts	good	bad
LDA	company (×) companies (×) british shares (×)	percent (×) economy (×) canadian united states (×)	school students city (×) state (×)	campaign clinton mayor election	fatburger dos (×) liar (×) cheeseburgers	ice cream chocolate gelato tea (×)	great place (×) love friendly	valet (×) peter (×) aid (×) relief (×)
Seeded LDA	britain british industry (×) deal (×) billion (×) business (×)	trade (×) city (×) building (×) street (×) buildings (×) york (×)	schools state (×) school students city (×) board (×)	political republican political senator president democrats	bearing (×) like (×) fries just (×) great (×) time (×)	sweet great (×) like (×) ice cream delicious (×) just (×)	breakfast place (×) great service (×) just (×) ordered (×)	rowdy service (×) did (×) order (×) time (×) ordered (×)
TWE	germany (×) spain (×) manufacturing (×) south korea (×) markets (×)	toronto osaka (×) booming (×) asia (×) alberta	arts (×) fourth graders musicians (×) advisors regents	religion race attraction (×) era (×) tale (×)	burgers fries hamburger cheeseburger patty	chocolate complimentary (×) green tea (×) sundae whipped cream	tasty decent darned (×) great suffered (×)	subpar positive (×) awful crappy honest (×)
Anchored CorEx	moscow (×) british london german (×) russian (×)	sports (×) games (×) players (×) canadian coach	republican (×) senator (×) democratic (×) school schools	military (×) war (×) troops (×) baghdad (×) iraq (×)	order (×) know (×) called (×) fries going (×)	make (×) chocolate people (×) right (×) want (×)	selection (×) prices (×) great reasonable mac (×)	did (×) just (×) came (×) asked (×) table (×)
Labeled ETM	france (×) germany (×) canada (×) british europe (×)	canadian british columbia britain (×) quebec north america (×)	higher education educational school schools regents	political expediency (×) perceptions (×) foreign affairs ideology	hamburger cheeseburger burgers patty steak (×)	pana gelato tiramisu cheesecake ice cream	decent great tasty bad (×) delicious	horrible terrible good (×) awful appallingly
CatE [WWW'20]	england london britons scottish great britain	ontario toronto quebec montreal ottawa	educational schools higher education secondary education teachers	political international politics liberalism political philosophy geopolitics	burgers cheeseburger hamburger burger king smash burger	dessert pastries cheesecakes scones ice cream	delicious mindful excellent wonderful faithful	sickening nasty dreadful freaks cheapskates

Outline

A Knowledge Graph in Need is a Good Knowledge Graph Indeed

Mining Unstructured Text for Multi-Dimensional Structured Information

- Understanding Semantics: Text Embedding and Discriminative Topic Analysis
- Organizing Data in Hierarchical Conceptual Space: Hierarchical Topic Mining
- Organizing Documents in Multi-Dimensional Space: Text-Cubes
- Construction of Multi-Dimensional Knowledge Graphs
- Looking Forward

Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding [KDD'20]

ROOT

baseball

dodgers

pitching

vankees

outfielder

ballplayers

politics

ideology

DartiSan

political

conservatism

liberal

tennis

tennis tournament

handball

hardcourts

wimbledon

navratilova

guitar

melody

aZZ

choreographer

ballet

troupe

science

physics

biology

chemistry

scientist

astronomy

soccer

soccer federation

striker

midfielder

doalkeeper

milutinovic

- JoSH: A joint tree and text embedding method
- Simultaneously modeling of the category tree structure in the spherical space

sports

tournament

championship

team

finals

basketball

golf

aolf club

nine-hole

tiger woods

colf courses

Sawgrass

□ Effective category representative term discovery

health

aids

health-care

mental health

Datients

Dediatric

hockey

quarterback

lineman

bulldogs

defensive-tackle

linebacker

hockey

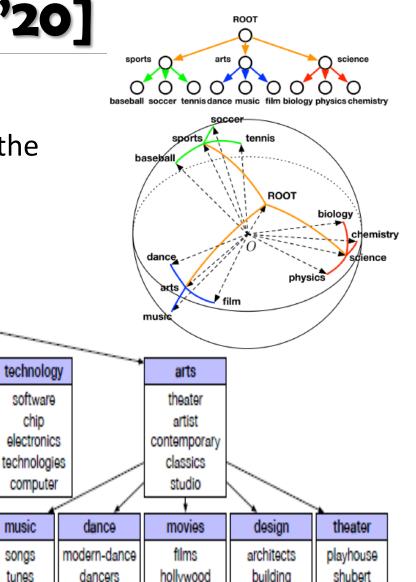
n.h.l

Canucks

lindros

mogilny

defenseman



comedies

film maker

blockbusters

designers

modernist

sculptor

broadway

mccarter

ortel

markets

stocks

currency

trading

investors

traders

business

corporations

employees

lobs

industries

wholesaling

media

television

columnists

newspapers

broadcast

radio

education

curriculum

school-based

educational

elementary

instruction

small business

small businesses

self-employed

low-wage

low-income

minimum-wage

Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding [KDD'20]

Automatic ontology construction from corpus

- Hierarchical embedding & discriminative topic mining
- JoSE [NeurIPS'19], CatE [WWW'20], JoSH [KDD'20] WeSHClass + JoSH
- Multiple pieces collaborated with Google, MSR, Amazon

Weakly supervised classification

Micro-F1

0.581

0.600

0.679

0.703

NYT

Macro-F1

0.425

0.429

0.503

0.582

Models

WeSHClass

IoSH

WeSHClass + CatE

arXiv

Micro-F1

0.542

0.610

0.622

0.673

Macro-F1

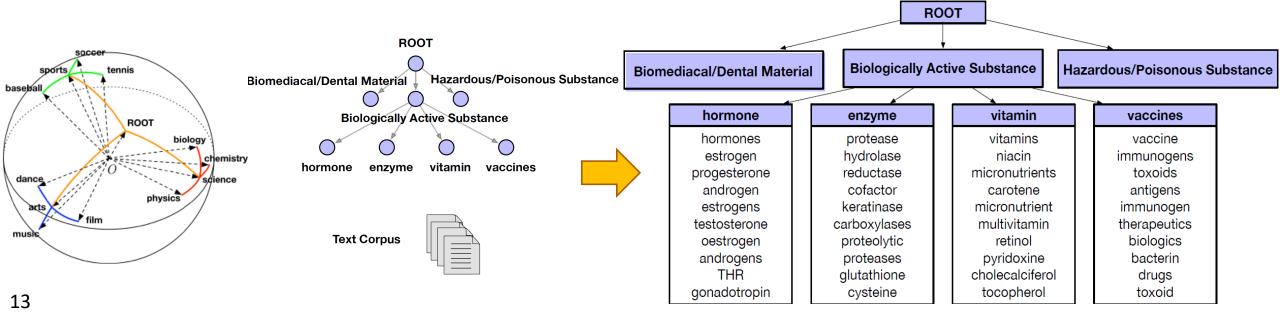
0.320

0.367

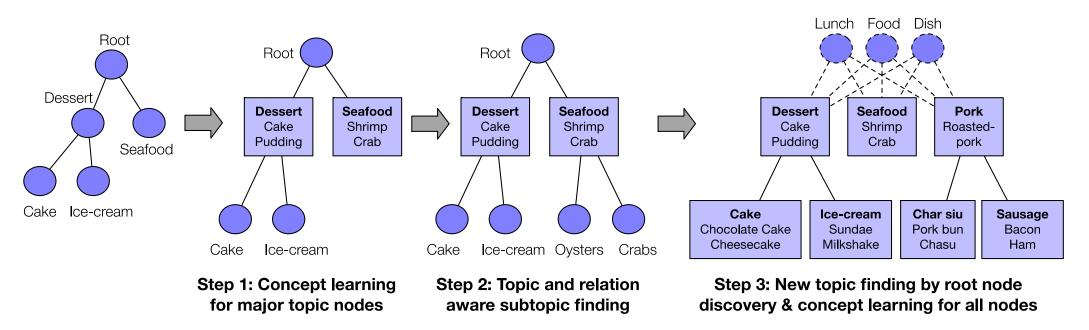
0.401

0.412

- Weakly supervised Doc classification and knowledge-base construction
 - WeSHClass [AAAI'19] and EvidenceMiner [ACL'20] (COVID'19 analysis)



Seed-guided Taxonomy Construction: CoRel [KDD'20]



- □ Step 1: Extract user-interested terms from the corpus to **enrich the semantics of each node**, and to **generate candidate** terms for subtopic finding. (Concept Learning)
- Step 2: Capture seed relations and transfers the relation to non-leaf nodes for subtopic finding. (Relation transferring)
- Step 3: Discover common root concepts by transferring the relation to top, and new topics can then be explored through potential root nodes. Enrich new nodes by representative terms. (Relation transferring + Concept Learning)

Qualitative/Quantitative Evaluation

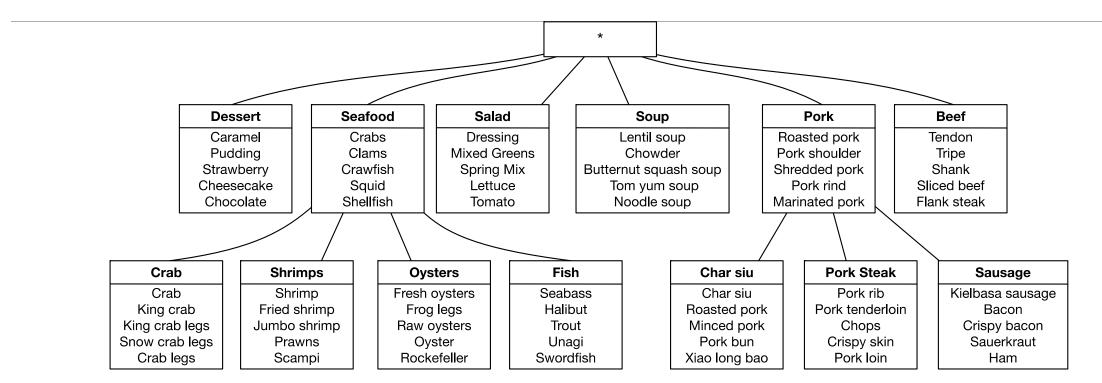


Table 5: Quantitative evaluation on topical taxonomies.

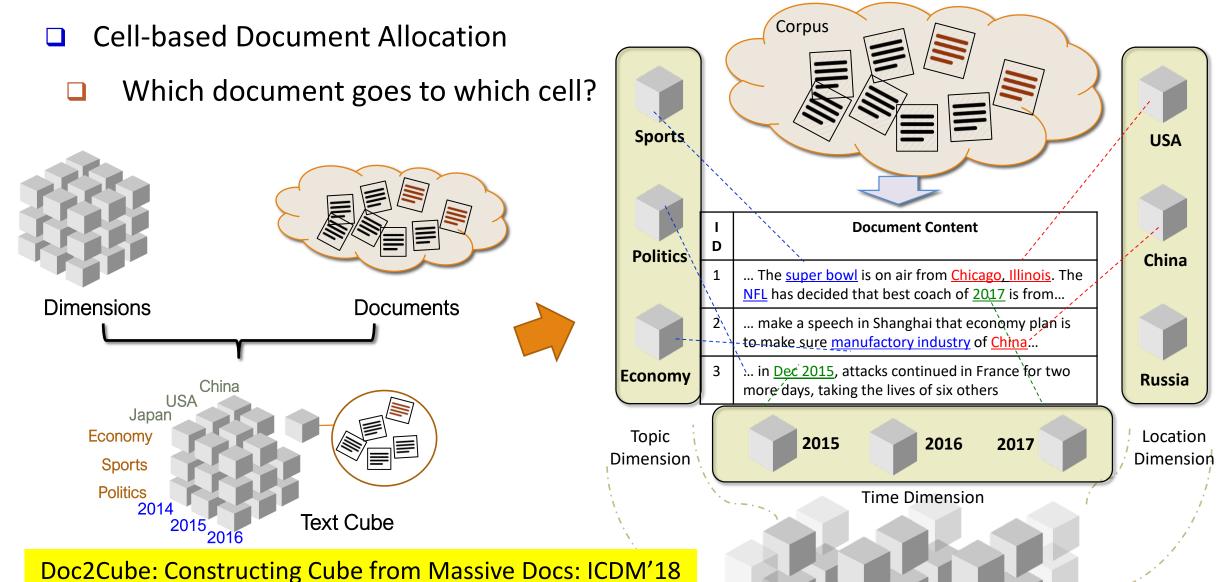
N 41 - 1	DBLP						Yelp						
Methods	TC	SD	$Precision_r$	Recall _r	F1-score _r	TC	SD	Precision _r	Recall_r	F1-score,			
HLDA	0.582	0.981	0.188	0.577	0.283	0.517	0.991	0.135	0.387	0.200			
HPAM	0.557	0.905	0.362	0.538	0.433	0.687	0.898	0.173	0.615	0.271			
TaxoGen	0.720	0.979	0.450	0.429	0.439	0.563	0.965	0.267	0.381	0.314			
Hi-Expan + CoL.	0.819	0.996	0.676	0.532	0.595	0.815	1.000	0.429	0.677	0.525			
CoRel	0.855	1.000	0.730	0.607	0.663	0.825	1.000	0.564	0.710	0.629			

Outline

A Knowledge Graph in Need is a Good Knowledge Graph Indeed

- Mining Unstructured Text for Multi-Dimensional Structured Information
- Understanding Semantics: Text Embedding and Discriminative Topic Analysis
- Organizing Data in Hierarchical Conceptual Space: Hierarchical Topic Mining
- Organizing Documents in Multi-Dimensional Space: Text-Cubes
- Construction of Multi-Dimensional Knowledge Graphs
- Looking Forward

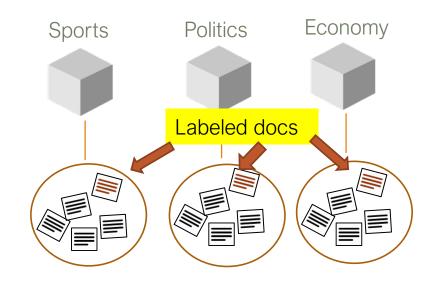
Cube Construction: Which Document Goes to Which Cell?

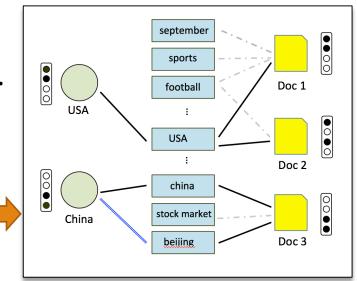


17

How to Put Documents into the Right Cube Cell?

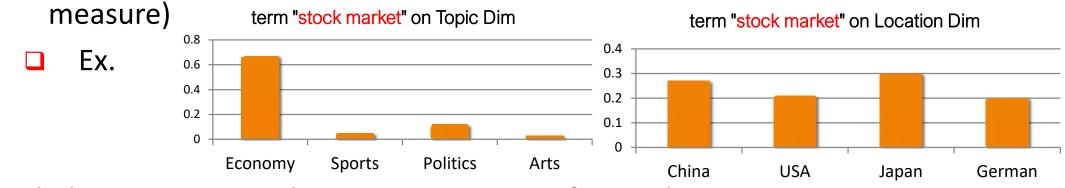
- Major challenges on putting docs into the right cell
 - Few would like label the "training sets"
 - So many cells, so many documents
 - Dimension values are often "under-represented"
 - □ E.g., Topic dimension: Sports, economy, politics,
 - Documents are often "over-represented" on single dimension
 - Ex. " The <u>super bowl</u> is on air from <u>Chicago, Illinois</u>.
 The <u>NFL</u> has decided that best coach of <u>2017</u> is from ...
- Our methodology: Dimension-aware joint embedding
 - Constructing an L-T-D (label-term-document) graph





Constructing Text Cubes with Massive Data, Few Labels

- Dimension focusing—**Dimension-Focal Score**, a discriminative measure
 - A term t is "focal" to dimension L
 - The documents with t has very imbalanced labels (KL-divergence can be a good

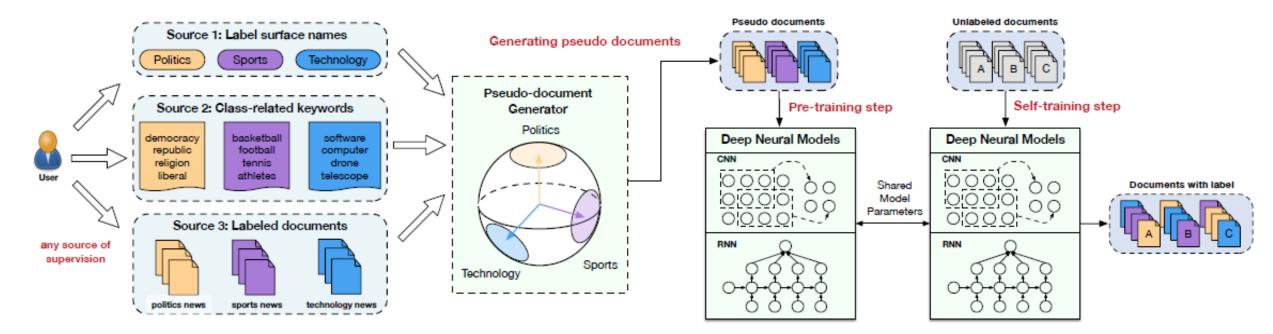


Label expansion: Combining two measures for seed expansion

Discriminativeness	Dimension	Label	1st Expansion	2nd Expansion	3rd Expansion
		Movies	films	director	hollywood
lloing food coord		Baseball	inning	hits	pitch
Using focal score	Topic	Tennis	wimbledon	french open	grand slam
		Business	company	chief executive	industry
Popularity 💦 🔪		Law Enforcement	litigation	law	county courthouse
ropalarity		Brazil	brazilian	sao paulo	confederations cup
	Location	Australia	sydney	australian	melbourne
Example:		Spain	madrid	barcelona	la liga
		China	chinese	shanghai	beijing

WeSTClass: Weakly Supervised Text Classification

- Modeling class distribution in word2vec embedding space
 - Word2vec embedding captures skip-gram (local) similarity (i.e., words with similar local context windows are expected to have similar meanings)



WeSTClass (Weakly Supervised Text Classification): CIKM'18 WeSHClass (Weakly Supervised Hierarchical Text Classification): AAAI'19

WeSTClass: Overall Classification Performance

Datasets: (1) NYT, (2) AG's News, (3) Yelp

□ Evaluation: use different types of weak supervision and measure accuracies

					-					
	Methods		The New York T	Times		AG's News			Yelp Review	v
		LABELS	KEYWORDS	DOCS	LABELS	KEYWORDS	DOCS	LABELS	KEYWORDS	DOCS
	IR with tf-idf	0.319	0.509	-	0.187	0.258	_	0.533	0.638	-
	Topic Model	0.301	0.253	-	0.496	0.723	-	0.333	0.333	-
	Dataless	0.484	-	-	0.688	-	-	0.337	-	-
Macro-F1 scores:	UNEC	0.690	-	-	0.659	-	-	0.602	-	-
	PTE	-	-	0.834 (0.024)	-	-	0.542 (0.029)	-	-	0.658 (0.042)
	HAN	0.348	0.534	0.740 (0.059)	0.498	0.621	0.731 (0.029)	0.519	0.631	0.686 (0.046)
	CNN	0.338	0.632	0.702 (0.059)	0.758	0.770	0.766 (0.035)	0.523	0.633	0.634 (0.096)
	NoST-HAN	0.515	0.213	0.823 (0.035)	0.590	0.727	0.745 (0.038)	0.731	0.338	0.682 (0.090)
	NoST-CNN	0.701	0.702	0.833 (0.013)	0.534	0.759	0.759 (0.032)	0.639	0.740	0.717 (0.058)
	WESTCLASS-HAN	0.754	0.640	0.832 (0.028)	0.816	0.820	0.782 (0.028)	0.769	0.736	0.729 (0.040)
	WESTCLASS-CNN	0.830	0.837	0.835 (0.010)	0.822	0.821	0.839 (0.007)	0.735	0.816	0.775 (0.037)
	IR with tf-idf	0.240	0.346	_	0.292	0.333	_	0.548	0.652	_
	Topic Model	0.240	0.623		0.292	0.735		0.548	0.500	-
	Dataless	0.710	0.025	-	0.584	-		0.500	0.500	-
	UNEC	0.810	-		0.668	-		0.603		-
Micro-F1 scores:	PTE	0.010	-	0.906 (0.020)	0.000	-	0.544 (0.031)	0.005	-	0.674 (0.029)
	HAN	0.251	0.595	0.849 (0.038)	0.500	0.619	0.733 (0.029)	0.530	0.643	0.690 (0.042)
	CNN	0.246	0.620	0.798 (0.085)	0.759	0.771	0.769 (0.034)	0.534	0.646	0.662 (0.062)
	NoST-HAN	0.788	0.676	0.906 (0.021)	0.619	0.736	0.747 (0.037)	0.740	0.502	0.698 (0.066)
	NoST-CNN	0.767	0.780	0.908 (0.013)	0.553	0.766	0.765 (0.031)	0.671	0.750	0.725 (0.050)
	WESTCLASS-HAN	0.901	0.859	0.908 (0.019)	0.816	0.822	0.782 (0.028)	0.771	0.737	0.729 (0.040)
	WESTCLASS-CNN	0.916	0.912	0.911 (0.007)	0.823	0.823	0.841 (0.007)	0.741	0.816	0.776 (0.037)
21										

Outline

A Knowledge Graph in Need is a Good Knowledge Graph Indeed

- Mining Unstructured Text for Multi-Dimensional Structured Information
 - Understanding Semantics: Text Embedding and Discriminative Topic Analysis
 - Organizing Data in Hierarchical Conceptual Space: Hierarchical Topic Mining
 - Organizing Documents in Multi-Dimensional Space: Text-Cubes
- Construction of Multi-Dimensional Knowledge Graphs
- Looking Forward

Construction of Multi-Dimensional Knowledge Graphs

- Layout structure of MD Knowledge graphs
 - Essentials: dimensions, levels and properties (attributes)
 - COVID-19: dimensions (e.g., time, location, situation, ...)
 - To study different aspects on COVID-19, construct themebased KGs (e.g., origin, spread, medication, vaccine, ...)
- (Weighted) nodes/edges extracted from text mining
 - Constructed dynamically or materialized into multigraphs
 - Context-based knowledge graph construction
- Graph mining and embedding methods can then be explored on such graphs
 - A wide-open area for research

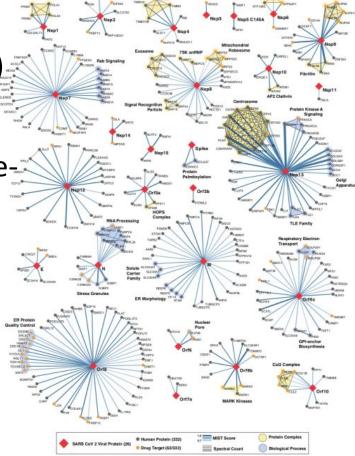
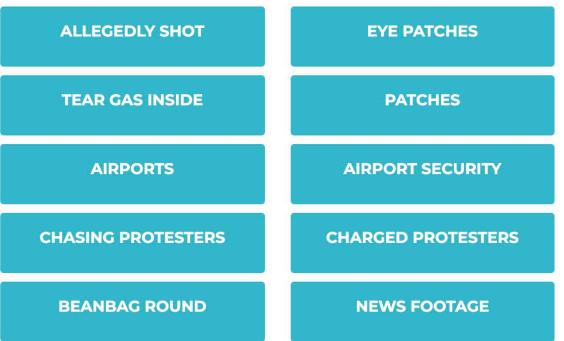


IMAGE & TOP-K KEYWORDS & SUMMARY

IT SHOWS THE RELATED IMAGE AND KEYWORDS.

MissionCube: Analysis of Different News Data Sets: HK Protests



Demonstrators don eye patches at Lantau Island hub, one of the world's busiest international airports, in anger that a girl allegedly shot with a police beanbag round could lose an eye \n Sit-in comes after night of escalated violence inside subway stations \n Demonstrators don eye patches at Lantau Island hub, one of the world's busiest international airports, in anger that a girl allegedly shot with a police beanbag round could lose an

Analysis of Hong Kong Protests

Category representative phrases generated automatically

IT SHOWS RELEVANT WORDS OF DIFFERENT CATEGORIES;

category names and three examples from the experts

POLITICAL	POLICE	ECONOMIC	INFORMATION	
pro democracy	tear gas	financial crisis	cbc news	hong kong university
pro beijing	hong kong police	economic downturn	cbs news	transportation
hong kong government	riot police	economic growth	fox news	international aiport
Chief executive	Water cannon	Infrastructure	Chinese state media	Mass transit railway
Mainland china	Pepper spray	Real estate	Bbc news	Lantau link
Pro establishment	Petrol bombs	Affordable housing	Global times	Flight cancellations
Mainland chinese	Hong kong government	Trade war	News media	Victoria harbour
Chief executive carrie lam	Beanbag rounds	The united states	Sina weibo	Rail operator
Carrie lam	Firing tear gas	Financial secretary	Internet censorship	Busiest airports
The chinese government	Tsuen wan	Global financial	Local media	Public transport

~

0

Ē

Ľ

Discriminative Topic Mining on COVID-19 Data

Dataset: Covid-19 Lite	erature D	Data	Origin	Evolution	Symptom	Examination	
			natrual_host	molecular_evolution	sore_throat	clinical_diagnosis	
Link provide in Wh			host_species	mutation_rate	respiratory_illn	ess emergency_room	
# of Documents: 9,	,000 ^{Or}	n Given Categories	homo_sapiens	natural_selection	common_col	d physical_examination	
# of Tokens: 46,540) 112		egyptian_fruit_bat	population_dynamics	dry_cough	primary_care	
	•		african_green_monkey	interspecies_transmission	acute_illness	s observation_period	
Vocabulary size (ur	nique tok	en): 30,223	chinese_horseshoe_bat	genetic_drift	nasal_congesti	ion chest_x_ray	
Distinct Topic Mining on Virus	istinct Topic Mining on Virus Type: On Age Group:				chest_pain	chest_radiographs	
MERS SARS	MERS SARS COVID-19 Ebola		Infant		ult	Elderly	
middle_east severe_acute_respiratory_sy ndrome	hubei_province	west_africa	early_childhood	healthy	/_adult	chronic_diseases	
saudi_arabia guangdong_province	mainland_china	marburg_virus	blood_transfusion	media	n_age	older_individuals	
renal_failure murine_coronavirus	2020	evd_outbreak	cord_blood	adult_	_male	vulnerable_populations	
united_arab_emirates carboxy_terminal	global_spread	sierra_leone	vertical_transmissio	on wild_c	autght	elderly_patients	
dipeptidyl_peptidase nonstructural_protein	incubation_periods	lassa_fever	maternal_antibodie	es househole	d_contact	economic_burden	
mers_cov_spike horseshoe_bats	unknown_etiology	nonhuman_primates	mammary_gland	organ_tran	splantation	vulnerable_groups	
nosocomial_transmission hcov_229e	imported_cases	ebov_infection	birth_defects	sexual_tra	nsmission	long_term_care	

NER Result Visualization: Scientific Literature

Angiotensin-converting enzyme 2 GENE_OR_GENOME (ACE2 GENE_OR_GENOME) as a SARS-CoV-2 CORONAVIRUS receptor CHEMICAL: molecular mechanisms and potential therapeutic target.

SARS-CoV-2 CORONAVIRUS has been sequenced [3]. A phylogenetic EVOLUTION analysis [3, 4] found a bat WILDLIFE origin for the SARS-CoV-2 CORONAVIRUS. There is a diversity of possible intermediate hosts NORP for SARS-CoV-2 CORONAVIRUS, including pangolins WILDLIFE, but not mice EUKARYOTE and rats EUKARYOTE [5]. There are many similarities of SARS-CoV-2 CORONAVIRUS with the original SARS-CoV CORONAVIRUS. Using computer modeling, Xu et al PERSON. [6] found that the spike proteins GENE_OR_GENOME of SARS-CoV-2 CORONAVIRUS and SARS-CoV CORONAVIRUS have almost identical 3-D structures in the receptor binding domain that maintains Van der Waals forces PHYSICAL_SCIENCE . SARS-CoV spike proteins GENE_OR_GENOME has a strong binding affinity DISEASE_OR_SYNDROME to human ACE2 GENE_OR_GENOME, based on biochemical interaction studies and crystal structure analysis [7]. SARS-CoV-2 CORONAVIRUS and SARS-CoV spike proteins GENE_OR_GENOME share identity in amino acid sequences and , importantly, the SARS-CoV-2 CORONAVIRUS and SARS-CoV spike proteins GENE_OR_GENOME have a high degree of homology [6, 7] . Wan et al PERSON. [4] reported that residue 394 CARDINAL (glutamine CHEMICAL) in the SARS-CoV-2 CORONAVIRUS receptor-binding domain

	Gene			Chemical		Disease			Total			
	Prec	Rec	F1	Prec	Rec	F1	Prec	Rec	F1	Prec	Rec	F1
SciSpacy (BIONLP13CG)	91.48	82.06	86.51	64.66	39.81	49.28	8.11	2.75	4.11	76.36	53.59	62.98
SciSpacy (BC5CDR)	-	-	-	86.97	51.86	64.69	80.31	59.65	68.46	82.40	54.57	65.66
Ours	82.14	74.68	78.23	82.93	75.22	78.89	75.73	68.42	71.89	81.29	73.65	77.28

Xuan Wang, Xiangchen Song, Bangzheng Li, Yingjun Guan and Jiawei Han, "Comprehensive Named Entity Recognition on CORD-19 with Distant or Weak Supervision", 2020 Intelligent Systems for Molecular Biology (ISMB'20), Abstracts (oral and poster), July 2020

27

EvidenceMiner: Theme-Specific Text [ACL'20]

UV, Ultraviolet, kill, sars-cov-2	Q Example : NSCLC is treated with nivolumab, HCC is treated with sorafenib, prostate cancer is tr							
Sentence Analytics	 Xuan Wang, Weili Liu, Aabhas Chauhan, Yingjun Guan and Jiawei Han, "Automatic Textual Evidence Mining in COVID-19 Literature", 2020 Intelligent Systems for Molecular Biology (ISMB'20), Abstracts (poster), July 2020 Xuan Wang, Vingiun Cuan, Waili Liu, Aabhas Chauhan, Envidence City David Liene, Disalar Sizdal, Jahn Caufield, Bainei 							
"UV, Ultraviolet, kill, sars-cov-2" (Total: 10000, Took: 7ms) ~ At most 10 results are shown per page ~	 Xuan Wang, Yingjun Guan, Weili Liu, Aabhas Chauhan, Enyi Jiang, Qi Li, David Liem, Dibakar Sigdel, John Caufield, Peipei Ping and Jiawei Han, "EVIDENCEMINER: Textual Evidence Discovery for Life Sciences", ACL'20 (System demo), July 2020 							
<u> Ultraviolet-C (UV-C) radiation represents an alternative to ch</u>	emical inactivation methods [21]. Context							
✓ Evidence Score 24.42	30789926							
	o, Núria', 'Riquelme, Cristina', 'Rosell, Rosa', 'Campbell, Joy', 'Crenshaw, Joe', 'Segalés, Joaquim', 'Pujols, Joan', 'Polo, Javier'] iolet-C irradiation equipment on inactivation of different enveloped and non-enveloped viruses inoculated in commercially collected							
Microscopy was performed using an IMT-2 Olympus microsco	ope equipped with ultraviolet light (UV) and an OM-4 camera. Context							
✓ Evidence Score 24.37	549							
Light Christopher', 'Bible, Jesse', 'Li, Jiliang', 'Xu Title: Additive Effects of Mechanical Marrow Ablation and PTH Treatm	a, Xiaoqing', 'Mehta, Nozer', 'Gilligan, James', 'Vignery, Agnès', 'Scholz, Jodi A Carlson'] 🗧 ent on de Novo Bone Formation in Mature Adult Rats							
We discuss 2 such modalities, respirators (face masks) and ult	raviolet (UV) light. Context							
✓ Evidence Score 23.61	'Weiss, Martin Meyer', 'Weiss, Peter D.', 'Weiss, Danielle E.', 'Weiss, Joseph B.'] 🗧							
<u>Ultraviolet light-inactivated TGEV (UV-TGEV) were developed</u>	l by irradiating TGEV stocks under ultraviolet light at a dose of 100 mJ/cm 2 . Context							
✓ Evidence Score 23.31	0322331							
Li', 'Qiao, Xinyuan', 'Zhang, Sijia', 'Qin, Yue', 'Guo, Tianti Title: Porcine transmissible gastroenteritis virus nonstructural proteir	an', 'Hao, Zhenye', 'Sun, Li', 'Wang, Xiaona', 'Wang, Yanan', 'Jiang, Yanping', 'Tang, Lijie', 'Xu, Yigang', 'Li, Yijing'] 🗧 a ctivation							
Boeing is also exploring a prototype self-sanitizing lavatory the	hat uses ultraviolet light to kill 99.99% of pathogens 48 . Context							
✓ Evidence Score 22.29	PMID 🚨 Nicolaides, C. 😆							
Title: Hand-hygiene mitigation strategies against globaldisease spread	ling through the air transportationnetwork							
In addition, UV-inactivated SARS CoV also activates immature	DCs [44]. Context							
✓ Evidence Score 21.75	628832							
	['Bai, Bingke', 'Hu, Qinxue', 'Hu, Hui', 'Zhou, Peng', 'Shi, Zhengli', 'Meng, Jin', 'Lu, Baojing', 'Huang, Yi', 'Mao, Panyong', 'Wang, Hanzhong'] Title: Virus-Like Particles of SARS-Like Coronavirus Formed by Membrane Proteins from Different Origins Demonstrate Stimulating Activity in Human Dendritic Cells							
Whole UV-inactivated SARS-CoV (UV-V), bearing multiple ep	itopes and proteins, is a candidate vaccine against this virus. Context							

✓ Evidence Score 21.74 📋 0 🗏 No journal info 🔗 PMID

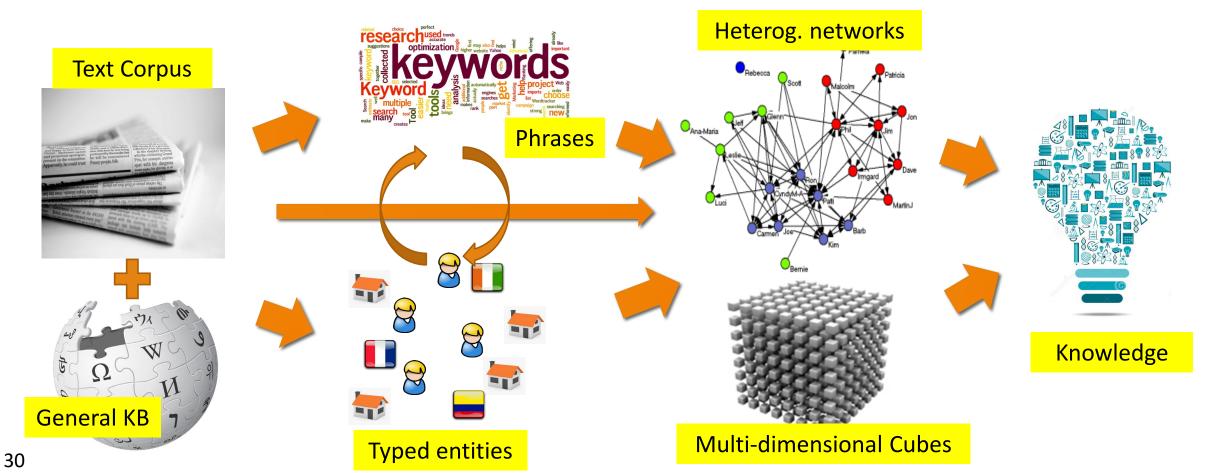
Outline

A Knowledge Graph in Need is a Good Knowledge Graph Indeed

- Mining Unstructured Text for Multi-Dimensional Structured Information
 - Understanding Semantics: Text Embedding and Discriminative Topic Analysis
 - Organizing Data in Hierarchical Conceptual Space: Hierarchical Topic Mining
 - Organizing Documents in Multi-Dimensional Space: Text-Cubes
- Construction of Multi-Dimensional Knowledge Graphs
- Looking Forward

Looking Forward: From Massive Text to Multi-D KGs

- To make KG solve real problems: We need multi-dimensional, situation-based knowledge graphs
- □ Key challenge: Automatically construct such knowledge graphs from text data



References

- Yu Meng, Jiaxin Huang, Jiawei Han, "Embedding-Driven Multi-Dimensional Topic Mining and Text Analysis", (Conference tutorial), 2020 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD'20), August 2020
- Jiaxin Huang, Yiqing Xie, Yu Meng, Yunyi Zhang and Jiawei Han, "CoRel: Seed-Guided Topical Taxonomy Construction by Concept Learning and Relation Transferring", in Proc. of 2020 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD'20), August 2020
- Yu Meng, Yunyi Zhang, Jiaxin Huang, Yu Zhang, Chao Zhang and Jiawei Han, "Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding", in Proc. of 2020 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD'20), August 2020
- Dawei Zhou, Lecheng Zheng, Jiawei Han and Jingrui He, "A Data Driven Graph Generative Model for Temporal Interaction Networks", in Proc. of 2020 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD'20), August 2020
- Xuan Wang, Yingjun Guan, Weili Liu, Aabhas Chauhan, Enyi Jiang, Qi Li, David Liem, Dibakar Sigdel, John Caufield, Peipei Ping and Jiawei Han, "EVIDENCEMINER: Textual Evidence Discovery for Life Sciences", in Proc. 2020 Annual Conf. of the Association for Computational Linguistics (ACL'20) (System demo), July 2020
- Honglei Zhuang, Fang Guo, Chao Zhang, Liyuan Liu and Jiawei Han, "Joint Aspect-Sentiment Analysis with Minimal User Guidance", in Proc. 2020 ACM SIGIR Int. Conf. on Research and development in Information Retrieval (SIGIR'20), July 2020
- Jiaxin Huang, Yiqing Xie, Yu Meng, Jiaming Shen, Yunyi Zhang and Jiawei Han, "Guiding Corpus-based Set Expansion by Auxiliary Sets Generation and Co-Expansion", in Proc. 2020 Int. World Wide Web Conf. (WWW'20), Apr. 2020
- Yu Meng, Jiaxin Huang, Guangyuan Wang, Zihan Wang, Chao Zhang, Yu Zhang and Jiawei Han, "Discriminative Topic Mining via Category-Name Guided Text Embedding", in Proc. 2020 The Wide Web Conf. (WWW'20), Apr. 2020
- Jiaming Shen, Zhihong Shen, Chenyan Xiong, Chi Wang, Kuansan Wang and Jiawei Han, "TaxoExpan: Self-supervised Taxonomy Expansion with Position-Enhanced Graph Neural Network", in Proc. 2020 The Web Conf. (WWW'20), Apr. 2020
- Yu Meng, Jiaxin Huang, Guangyuan Wang, Chao Zhang, Honglei Zhuang, Lance Kaplan and Jiawei Han, "Spherical Text Embedding", in Proc. 2019 Conf. on Neural Information Processing Systems (NeurIPS'19), Vancouver, Canada, Dec. 2019

Acknowledgements

□ Thanks for the research support from: ARL/NSCTA, NIH, NSF, DARPA, DTRA,

